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Abstract

The derivation of estimators in a multi-phase calibration process requires a se-
quential computation of calibrated weights of previous phases in order to obtain
those of later ones. Already after two phases of calibration the estimators and their
variances involve calibration factors and regression remainders from both phases and
the formulae become cumbersome and uninformative. As a consequence the liter-
ature so far deals mainly with two phases while three phases or more are rarely
being considered. The analysis in those cases is ad-hoc for the specific design and no
comprehensive methodology for constructing calibrated estimators, and even more
challengingly, estimating their variances in three or more phases was formed and thus
in most cases does not exit. We provide a closed form formula for the variance of
multi-phase calibrated estimators that holds for any number of phases of calibration.
This new estimator of the variance is not only general for any number of phases but
also has some favorable characteristics.

KEY WORDS: Multi-phase sampling, Generalized regression.

1 Introduction

Survey statistics makes use of available auxiliary information on known population totals
in order to improve survey estimates. A calibration estimator uses calibrated weights
which are as close as possible, according to a given distance measure, to the initial
sampling design weights, while also satisfying a set of constraints induced by the auxiliary
information. Arbitrary sampling designs are allowed at all phases of sampling and the
auxiliary information can be used at any phase and is incorporated in the estimation
process in each phase.

Multi-phase sampling along with calibration to known auxiliary information is a
powerful and cost effective technique. Rao (1973) and Cochran (1977, ch. 12) provided
the basic results for stratification and non-response in two-phase sampling. The process of
calibration has been extensively studied and a detailed framework of the linear weighting
approach in two-phase sampling appears in Särndal et al. (1992) chapter 9. More related
to our work, Breidt and Fuller (1993) gave efficient estimation procedures for three phase
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sampling in the presence of auxiliary information and Hidiroglou and Särndal (1998)
studied the use of auxiliary information for two-phase sampling while allowing a minor
modification in the distance function that results with additive g-factors rather than
multiplicative ones. A common characteristic of all these results is the presentation of
last phase calibrated weights via calibrated weights of previous phases. This is a major
drawback as it requires computation of weights of all former phases in order to obtain
those of later ones and as a consequence makes it difficult to provide a well established
methodology of how to estimate the variance of the calibrated estimators in designs
with more than two phases. The special case of two phases is an exception that was
elaborately investigated.

To address this problem we use the modification of the generalized least squares
(GLS) distance function, introduced by Hidiroglou and Särndal (1998), to provide a new
presentation of the vector of multi-phase calibrated weights which are presented solely
through the initial weights based on the sampling design and does not include calibrating
factors (also known as g-factors). From this presentation we derive a consistent estimator
for the variance of multi-phase calibrated estimators that holds for any number of phases
of calibration.

2 Notation

Consider a finite population U = {1, . . . , k, . . . , N}. A first phase probability sample
s1(s1 ⊆ U) is drawn from the population U , using a sampling design that generates the
selection probability π1k for the k’th unit in the population. Given that si−1 has been
drawn, the i ’th phase sample si(si ⊆ si−1), is selected from si−1, with sampling design
with the selection probabilities πik|si−1

≡ Pr(k ∈ si|k ∈ si−1). Note the conditional
nature of the consequent phase selection probabilities. From this point on, we work only
with weights in the estimation process. The conditioned i ’th phase sampling weight of
unit k ∈ si and its overall sampling weight will be denoted by wik = 1/πik|si−1

and

w∗
ik =

∏i
j=1wjk respectively.

Let yk be the value of the target variable for the k ’th population unit with which
an auxiliary vector xk = (x1k, . . . , xjk, . . . , xpk) is associated. Denote by y the vector of
elements of the target variable obtained at the last phase of sampling, p. The population
total of x, tx =

∑
U xk is assumed to be unknown. However, some totals may be known

from relatively accurate sources such as census data or other types of administrative files.
Without loss of generality let x1 be the vector of variables known for all units in the
population U . Let x2 be the vector of variables obtained in the first phase sample s1,
and so on. For elements in sr, r ≤ p the complete information is thus summarized in the
vector x = (x1

′,x2
′, . . . ,xr

′)′. Denote also ti = txi
.

The auxiliary information available at each phase of sampling can be used to obtain
improved weights by the process of calibration which will produce calibration factors to be
used in the estimation process. We use the superscript ”*” to denote overall weights, i.e.,
weights taking all phases into account. The super-imposed symbol ”∼” denotes calibrated
weights. The i ’th phase calibration factors are denoted as gik, resulting with i ’th phase
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calibrated weights w̃ik = w̃i−1,kwikgik for k ∈ si, where w̃i−1,k are the calibrated weights
of the i-1 ’th phase, and w̃0k = 1. For k ∈ si the calibration with respect to all phases
produces overall calibration factors denoted as g∗ik. As a result we will have overall
calibrated weights w̃ik = w∗

ikg
∗
ik where w∗

ik is the overall sampling weight.

3 Calibration with GLS distance

Calibration requires the specification of a distance function measuring the distance be-
tween the initial weights and the new calibrated weights. Several distance functions have
been studied, see a selected summary in Deville and Särndal (1992). We will use the GLS
distance function, introduced by Hidiroglou and Särndal (1998). This distance finds the
values w̃ik for the set k ∈ si, that minimize the expression

∑
k∈si

(w̃ik − w̃i−1,kwik)
2

w∗
i−1,kwik

(1)

subject to ∑
k∈si

w̃ikxik =
∑

k∈si−1

w̃i−1,kxik (2)

where {w̃i−1,k : k ∈ si} are the initial weights at the beginning of phase i, i.e., the cali-
brated weights obtained at phase i− 1 and {w̃ik : k ∈ si} are the calibrated weights for
phase i that we want to obtain. The weights resulting from this calibration scheme are
w̃ik = w̃i−1,kwikgik where gik = 1 + (

∑
l∈si−1

w̃i−1,lxil −
∑

l∈si w̃i−1,lwilxil)
′T−1

i xik with
Ti =

∑
l∈si w

∗
ilxilx

′
il. The special characteristics of this distance is that the calibration

factors in this process operate additively so the overall calibrated weights resulting from
minimizing (1) subject to (2) are

w̃pk = w∗
pk(g1k + . . .+ gik + . . .+ gpk − (p− 1)) (3)

for k ∈ sp. Denote wi the vector with components wik; k = 1 . . . ni, and Di a
diagonal matrix of size ni with wi on its diagonal. The same notation will be

used with the vectors w∗
i and w̃i. Let B̂+

ij =
(∑

k∈si w
∗
ikxikx

′
ik

)−1 ∑
k∈sj w

∗
jkxikx

′
jk

and B̂−
ij =

(∑
k∈si w

∗
ikxikx

′
ik

)−1 ∑
k∈sj−1

w∗
j−1,kxikx

′
jk be estimators for Bij =

(
∑

k∈U xikx
′
ik)

−1 ∑
k∈U xikx

′
jk the regression coefficient of xj on xi. The difference be-

tween the two estimators is that while B̂−
ij uses the entire set of units known for xj which

is obtained in sj−1, B̂
+
ij uses only the subset sj ⊆ sj−1 and thus more variable than

B̂−
ij . Let Ẑij = B̂+

ij − B̂−
ij the difference between the two regression estimates which is

consistent to zero. Denote also Ẑi1i2...ik =
∏k

j=2 Ẑij−1ij for k ≥ 2 and Ẑi1 = 1 for k = 1.

Let t̂−i =
∑

k∈si−1
w∗
i−1kxik and t̂+i =

∑
k∈si w

∗
ikxik be two Horvitz-Thompson estimators

for ti, based on the units obtained in samples si−1 and si respectively. Note that all the
estimators defined in this paragraph use overall design weights w∗ and not calibrated
weights.
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3.1 Estimation

The motivation to our next analysis comes from the recursive nature of w̃ik in (3), where
calibrated weights of previous phases 1, . . . , i− 1 are nested in each gik. In the following
lemma we provide a presentation of w̃p, the vector of calibrated weights after p phases
of calibration, that relies solely on the pre-known sampling design weights {w∗

i }
p
i=1.

Lemma 3.1 Consider a multi-phase sampling design with a calibration scheme that pro-
duces additive g-factors as in (1). A presentation of the calibrated weights at phase p
that is based entirely on the design weights is

w̃p = D∗′
p 1np +

p∑
i1=1

Ai1 −
p∑

i1<i2

Ai1i2

+ . . .+ (−1)k+1
p∑

i1<...<ik

Ai1i2...ik + . . .+ (−1)p+1Ai1i2...ip (4)

where
A′

i1i2...ik
= (t̂−i1 − t̂+i1)

′Ẑi1i2...ik(X
′
ik
D∗

ik
Xik)

−1X ′
ik
D∗

p.

Proof. We use brute force to substitute each g-factor with its expression and repeat this
process until no calibrated weights are left. The proof is omitted. 2

The calibrated weight w̃p therefore equals to D∗′
p 1np , the overall design weight, plus

correction terms of lower orders of magnitude, and maintains the familiar characteristic
of calibrated weights. Let y be some variable of interest for which we want to estimate

the population total Y . Denote β̂j =
(
XjD

∗
jXj

)−1
XjD

∗
py, the regression coefficient of

y on xj, and ŶHTp = 1′np
D∗

py the non-calibrated Horvitz-Thompson estimator computed
over the elements in sp. Rearranging the terms in (4) produces a more conventional
presentation of the multi-phased calibrated estimator w̃′

py as a ”one-phase” multi-variate
regression estimator

w̃′
py = ŶHTp +

∑p

i1=1
(t̂−i1 − t̂+i1)

′γ̂i1 (5)

where

γ̂i1 = β̂i1 −
∑p

i1<i2
Ẑi1i2 β̂i2 +

. . .+ (−1)k+1
∑p

i1<...<ik
Ẑi1i2...ik β̂ik + . . .+ (−1)p−(i1−1)+1Ẑi1...pβ̂p.

This presentation in equation (5) now enables a computation to produce an innovative
consistent estimator for the variance of multi-phase calibrated estimators.

Theorem 3.1 Let êrk = x′rkγ̂r−x′r+1,kγ̂r+1 for r < p and êpk = x′pkγ̂p−yk. A consistent
estimator for the variance of w̃′

py is
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∑
1≤r1,r2≤p

∑
k∈srm ,l∈srM

w∗
rM l

w∗
rml

(
w∗
rmkw

∗
rml − w∗

rmkl

)
êrmkêrM l (6)

where rm = min(r1, r2) and rM = max(r1, r2).

Proof. The proof repeats the steps used in the case of one-phase multi-variate cali-
bration. It involves evaluation of the highest orders of magnitude and the estimation of
their variance. Special care is given to the evaluation of the joint probability of events
{k ∈ si, l ∈ sj} and estimation of the covariance between units from different phases of
sampling. See appendix. 2

3.2 Example: Two-phase calibration

We will use the special case of two-phase calibration (p = 2) to demonstrate our method-
ology and the modifications from other estimators commonly used in literature. The
calibrated estimator is given according to (5) by

w̃′
2y = ŶHT2 + (t̂−1 − t̂+1 )

′γ̂1 + (t̂−2 − t̂+2 )
′γ̂2

where γ̂1 = β̂1 − Ẑ12β̂2 and γ̂2 = β̂2. This estimator produces the same estimates as the
two-phase calibrated estimator used in Hidiroglou and Särndal (1998) or in Särndal et
al. (1992) section 9.7. But once one has computed the estimates to the parameters γ̂i,
the presentation of w̃′

2y becomes simple and informative, having the structure of a simple
multi-variate regression estimator. γ̂i expresses the overall impact of the calibration to
the variable xi on the estimation of Y . It takes into account the projection of y on
xi, the projection of y on xi+1 multiplied by the projection of xi+1 on xi and so on.
Moreover, as we will now show, the variance estimators differ significantly both in value
and presentation. The common estimator for the variance used up to now in literature
was given according to

V̂C(w̃
′
2y) =

∑
k,l∈s2

w2kl(w1kw1l − w1kl)(g1kě1k)(g1lě1l)

+
∑

k,l∈s2
w1kw1l(w2kw2l − w2kl)(g2kě2k)(g2lě2l) (7)

where the error factors are ě1k = yk−x′1kγ̂1 and ě2k = yk−x′2kγ̂2 both defined for k ∈ s2
because y is observed only at s2. The g-factors are defined the same as in our analysis.
On the other hand, the variance estimator suggested in (6) for two-phase calibration is
given by

V̂P (w̃
′
2y) =

∑
k,l∈s1

(w1kw1l − w1kl)ê1kê1l +
∑

k,l∈s2
(w∗

2kw
∗
2l − w∗

2kl)ê2kê2l

+2
∑

k∈s1,l∈s2

w∗
2l

w1l
(w1kw1l − w1kl)ê1kê2l. (8)
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The difference in the variance estimator between the two methods represented by
equations (7) and (8) is fundamental. It is expressed in a couple of layers. While
the error factor of the second phase in both methods is the same, i.e., ê2k = ě2k, the
error factor of the first phase differ. ě1k is based on the difference between yk and the
regression predictor x′1kγ̂1 while ê1k is based on the difference between the predictors
of phases one and two x′1kγ̂1 − x′2kγ̂2. This modification enables the first summand
in (8) to be computed over s1 and not s2 where the sample is larger. Moreover, the
estimator (8) has a third summand which involves the product of the two error factors
from both phases that has no parallel in (7). Although this product will often be close to
zero whenever the error factors are not strongly correlated, it may still not be negligible
whenever y has a very strong correlation with x1. An evident advantage is the absence of
the g-factors which make the estimator much simpler to compute. That is, once we have
computed the parameters estimates γ̂i; i = 1 . . . p, the estimator (8) can be computed
using design parameters only. From an operational point of view, maybe most important
is that (8) has the advantage that in the vast majority of designs the second summand
constitutes the absolute majority of the variance while the summands in (7) are usually
of the same order of magnitude. This characteristic stems from the fact that the term
(w∗

2kw
∗
2l−w∗

2kl) that involves the total sampling weights is very large in comparison with
(w1kw1l−w1kl) or w1kw1l(w2kw2l−w2kl). The expression wkwl−wkl attains its maximum
on the diagonal k = l where it is proportional to w2

k which increases dramatically its value
when it depends on total weights w∗ instead of w. The second summand may therefore
be a good estimator of the variance of the calibrated estimator practically on its own.

A typical pattern of the comparison between the two variance estimators in the
special case of two-phase calibration is presented in Figure 1. It can be seen that in most
realizations the difference between the two variance estimators is very small, although
on a certain one it can reach up to 20%. The mean value of both estimators for the
variance was very similar, namely, 54.17 and 54.65, while the true value of that specific
simulation data was 54.46. This pattern repeated itself for all variables studied. We
did not investigate this specific data or the special case of two-phase calibration any
further as our objective was to provide a consistent estimator for the variance that holds
for any number of phases of calibration. Another simulation study demonstrated an
excellent estimation for the variance of a three-phase calibrated estimator for all variables
examined. A comparison to other estimators in three or more phases was not preformed
because alternative estimators to the variance in those cases do not exist.

Appendix

Proof of theorem 3.1 B̂+
ij , B̂

−
ij are both consistent to Bij . Write B̂+

ij = Bij+(B̂+
ij−Bij)

so B̂+
ij = Bij +Op(n

−1/2
j ). Recall that Ẑij = B̂+

ij − B̂−
ij where B̂−

ij is based over sj−1 while

B̂+
ij over its subsample sj and thus also Ẑij = Op(n

−1/2
j ) and Ẑi1i2...ik is bounded by

Op(n
−1/2
ik

). Likewise β̂j is βj +Op(n
−1/2
p ) because y is observed only at the last phase of

sampling sp. Hence γ̂i is consistent for γi for all i, where β̂i in γ̂i are replaced by βi in γi.
Consistency does not necessarily imply the convergence of the moments and specifically
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Figure 1: Variance estimates in two-phase calibration. 1000 realizations of the proposed
estimator (eq. 8) Vs the conventional estimator (eq. 7) for the variance of the calibrated
estimator of Y . The solid line is the main diagonal.

not of the variance. However, for a finite population, i.e., a finite probability space, the
concepts coincide. It follows that for np large enough V ar(ŶHTp+

∑p
i1=1(t̂

−
i1
− t̂+i1)

′γ̂i1) and

V ar(ŶHTp +
∑p

i1=1(t̂
−
i1
− t̂+i1)

′γi1) are asymptotically equivalent and following the above
discussion the difference can be quantified by

V ar(w̃′
py) = V ar(ŶHTp +

∑p

r=1
(t̂−r − t̂+r )

′γr) +N2o(n−1
p ).

The estimator t̂+r is a summation over units in sr while t̂−r is over sr−1. Rearranging
the terms, the variance on the right hand side can be written as V ar(

∑p
r=1

∑
i∈Sr

w∗
rieri)

which is equal to ∑
1≤r1,r2≤p

∑
k∈U

∑
l∈U

w∗
r1ker1kw

∗
r2ler2lCov(Ik∈sr1 , Il∈sr2 )

so a sample based estimator would be

∑
1≤r1,r2≤p

∑
k∈sr1 ,l∈sr2

w∗
r1kêr1kw

∗
r2lêr2l[1−

P (k ∈ sr1)P (l ∈ sr2)

P (k ∈ sr1 , l ∈ sr2)
]. (9)

To compute the covariance between the indicators Ik∈sr1 and Il∈sr2 we need to know
the joint probability of events {k ∈ si, l ∈ sj}. If sj ⊂ si, then P (k ∈ si, l ∈ sj) equals
the joint probability that both units k, l are in sample si = smin(i,j), multiplied by the
conditional probability that unit l is in sample sj given that it belongs to si. Formally,

if sj ⊂ si then P (k ∈ si, l ∈ sj) =
w∗

il
w∗

jl
w∗−1
i,lk , hence eliminating the dependence on sr2 in

the brackets in (9) and the result follows. 2
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