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Abstract 

 

A constrained optimization method is developed to address estimation problems when dealing with 

high dimensional input in regression.  The method simultaneously considers dimension reduction 

(among the input variables) while maintaining relatively high predictive ability (in the fitted target 

variable).  The method uses an alternating and iterative solution via soft thresholding, and yields fitted 

models with sparse regression coefficients.  Results of the simulation studies show that the method 

may outperform other constrained regression methods in terms of predictive ability and selection of 

input variables.  That is, the method selects a smaller set of input variables that both captures the 

dimensionality of the inputs (high retained variability from the inputs) and gives the most predictive 

model for the target variable (lowest squared prediction error).  The method is applied to model cross-

country quality of life (with emphasis on mortality).  Environment, lifestyle, health care, health status, 

health policy, and morbidity indicators are considered as inputs.  Results from the empirical data show 

that quality of life may be explained primarily by health condition of women, welfare of children, and 

government spending on health.  
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1. Introduction 

 

Analyses of high dimensional data are abundant in many applications such as in genomics, 

bioinformatics, agriculture, astronomy, and business intelligence.  However, the literature has been 

dominated by the assumption of smaller number of features (p) relative to the number of observations 

(n).  Similarly, asymptotic theories may not be helpful as it assumes n approaching ∞ while p is fixed.  

These lead to difficulties in dealing with data having p>>n, i.e., data with a relatively larger number 

of features compared to the number of observations.  

 

In the classical regression framework, it is assumed that p ≤ n; otherwise, the design matrix is singular 

and therefore the parameters in the regression model are not uniquely estimable.  As a solution, 

variables are dropped but at the expense of bias for the regression coefficients of the remaining 

variables.  In time series data of indicators, e.g., those benefiting from macroeconomic policies, 

natural drifting of the variables as well as non-stationarity are expected resulting to ill-conditioning 

problem.  Such problems can be mitigated commonly through using the growth rate (differencing) of 

the indicators instead of the original levels.  Differencing, however, results to an alteration of the 

dependence structure in the data, thereby eliminating the effect of some important random shocks and 

possibly contaminating the relationship being investigated.  

 

An alternative approach in modeling high dimensional data for purposes of dimension reduction and 

variable selection under a regression modeling framework is presented.  The method provides a 

strategy for modeling high-order covariates and outputs in a regression-type problem, i.e., modeling 

multicollinear data (cross-sectional data) or nonstationary data (time series and/or spatio-temporal 

data).  It further identifies key predictors among a large number of predictors (or equivalently, for a 



    
 
small number of observations).  Simulation studies and application to an empirical data are made to 

evaluate as well as demonstrate the use of the developed method. 

 

2. Modeling High Dimensional Data 

 

High dimensionality refers to either one of the following: the number of observations 𝑛 is very large 

relative to the number of predictors 𝑝, or the number of predictors 𝑝 is very large compared to the 

number of observations 𝑛.  The higher the dimensionality (of 𝑝 or of 𝑛), the more difficult it is to 

identify the best “representation” of the data which, in a general sense, is a “curse of dimensionality” 

(Bellman, 1957).  Simultaneous testing of the 𝑝 predictors becomes more and more inefficient as 𝑝 

gets larger and larger.  Variable selection (and equivalently, observation clustering) becomes more and 

more difficult as 𝑝  (or 𝑛 ) gets larger and larger.  In regression modeling with very large 𝑝 , 

identification of the most important set of predictors becomes more difficult since presence of too 

many predictors masks the importance of some, thereby leading to more potential problems of 

incorrect postulated model.  The usefulness and interpretability of the identified “important” set of 

predictors may be problematic, or at least, doubtful. 

 

Solutions to multicollinearity and singularity range from transformations, to variable selection 

methods, to modified estimation procedures; and issues were raised in using such solutions.  Marx and 

Smith (1990) cite variable deletion, Stein estimation, ridge regression and principal component 

regression (PCR) as solutions to multicollinearity, and suggest that one-step adjustment to the 

maximum likelihood estimation (MLE) of the beta coefficients for ill-conditioned information matrix 

yields coefficients that are asymptotically biased.  Garson (2012) noted that stepwise regression 

methods are even more affected by multicollinearity than regular methods since additional information 

is difficult to attain with the deletion of “unimportant” variables, and as such, the process of deletion 

sometimes introduces subjectivity.  Garson (2012) further suggests that power and nonlinear 

transformations may cause over-fitting or even increase the level of multicollinearity.  

 

The use of principal components in regression (principal component regression or PCR), is proposed 

as a possible solution to the problem of multicollinearity (Jolliffe, 2002).  PCR, as noted by Kosfeld 

and Lauridsen (2008), may work for cases with highly multicollinear independent variables since PCR 

reduces the variability of the regression coefficients estimates but at the expense of its bias.  Fewer 

components may be used (based on eigenvalues and/or tests of significance), but with discrepancy in 

the amount of information between the raw individual predictors and the PCs.  Foucart (2000) also 

notes that deleting components that are not significant may introduce bias to the least squares 

estimates of the remaining coefficients and may reduce the unbiased residual variance.     

 

Focusing on the variance inflation problem caused by multicollinearity, shrinkage estimators are 

considered as solutions (see for example Filzmoser and Croux, 2002; Goldenshluger and Tsybakov, 

2001; Klinger, 2001; Zou and Hastie, 2005).  Similarly, it is common to implement a regularization 

technique, i.e., by introducing a penalty on the optimization framework.  One of the most commonly 

used regularization techniques is the ridge regression (Hoerl and Kennard, 1970), which introduce bias 

on the parameters to stabilize the variance.  Ridge regression, however, depends on the choice of the 

ridge parameter which tends to be subjective in nature.   The propagation of bias in the parameter 

estimates also complicates the interpretation of the relative contribution of the individual determinants 

toward the dependent variable.  Also, variances of the regression coefficients remain to be potentially 

large even with the introduction of the ℓ2 norm penalty in ridge regression modeling.  Thus as a new 

direction, Tibshirani (1996) introduces a regularized method, called the least absolute shrinkage and 

selection operator (LASSO), which considers a penalty under the ℓ1 norm.  The method generally 

leads to sparse solutions, i.e., those “less significant” parameters tend to be nearly-zero or exactly zero.   

 



    
 
Evidently, sparsity is one of the key solutions to the ease of interpretation of (linear) combinations of 

variables.  For instance, Chipman and Gu (2005) address the interpretability problem by considering 

homogeneity constraints and sparsity constraints.  Zou and Hastie (2005) introduce the elastic net 

(EN) penalty as a modification of the LASSO by Tibshirani (1996).  Klinger (2001) uses penalized 

likelihood estimators for a large number of coefficients to extend soft thresholding and LASSO 

methods on generalized linear models.  Zou et al. (2006) developed sparse principal component 

analysis (SPCA) and the resulting sparse PCs can be used in regression analysis, the method is 

subsequently explored in this paper. 

 

3. Dimension Reduction and Variable Selection – The LaNS Framework  

 

Zou et al. (2006) use the LASSO and ridge-type constraints to principal components extraction.  The 

extraction is formulated as a regression problem and optimization results to components with sparse 

loadings.  The sparse principal component analysis (SPCA) uses both ℓ1 and ℓ2 penalties to come up 

with the sparse principal components (SPCs).  Optimization is done through a regression-type criterion 

to derive the SPCs in two stages.  Sparse principal component regression (SPCR) uses SPCs as 

predictors in the model.  With the sparsity that comes in under this two-step procedure (SPCA first on 

the data matrix 𝑋 , then regression on the response 𝑦  using the derived SPCs), SPCR provides a 

solution to multicollinearity and to the issue on components selection.  Although there is little known 

properties and advantages of using SPCR over PCR, SPCR may be the more logical option for cases 

when 𝑝 ≫ 𝑛.   

 

The developed framework on the other hand combines both the construction of SPCs and the 

estimation of regression parameters as a one-time optimization problem.  That is, the framework 

considers a simultaneous approach for addressing issues on high dimensionality and/or 

multicollinearity in the regression problem while optimizing captured information among the original 

input variables and minimizing the error on prediction of the dependent variable using the sparse 

components. 

 

Let 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝)
𝑇

∈ ℝ𝑝  be the p-dimensional response from the 𝑖𝑡ℎ  subject, where 𝑖 =

1, 2, … , 𝑛.  Equivalently, let 𝑋𝑗 = (𝑥1𝑗, 𝑥2𝑗, … , 𝑥𝑛𝑗)
𝑇

∈ ℝ𝑛 be the n-dimensional observation on the 

𝑗𝑡ℎ variable, where 𝑗 = 1, 2, … , 𝑝.  Thus, 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇

= (𝑋1, 𝑋2, … , 𝑋𝑝) is the 𝑛 × 𝑝  matrix 

of observed values for the 𝑝 (original) variables over the 𝑛 subjects, 𝑋𝑗′𝑠 are assumed to be centered.  

The singular value decomposition (SVD) of 𝑋 is 𝑋 = 𝑈𝑆𝑉𝑇 , where 𝑈  is 𝑛 × 𝑛  and 𝑉 is 𝑝 × 𝑝 for 

which 𝑈𝑇𝑈 = 𝐼𝑛 and 𝑉𝑇𝑉 = 𝐼𝑝, and 𝑆 is 𝑛 × 𝑝 rectangular diagonal matrix.  Thus, an approximation 

of 𝑋 is given by �̂� = 𝑈𝑞𝑆𝑞𝑉𝑞
𝑇, where 𝑈𝑞 and 𝑉𝑞 are the first 𝑞 columns of 𝑈 and 𝑉, respectively, and 

𝑆𝑞 is the 𝑞 × 𝑞 diagonal matrix of the singular values in 𝑆.  �̂� becomes a low-rank approximation of 𝑋 

(Eckart and Young, 1936).  Let 𝐴 and 𝐵 be 𝑝 × 𝑘 matrices, where 𝑘 < 𝑝 and such that 𝐴𝑇𝐴 = 𝐼𝑘, then 

a generalized solution �̂� for an approximation of 𝑋 can be based on the minimization of the function 

𝑓(𝐴, 𝐵) = ‖𝑋 − 𝑋𝐵𝐴𝑇‖
𝐹

2
, where ‖∙‖𝐹

2  is the squared Frobenius norm, and imposing orthonormality of 

𝐴 for identifiability and restrictions on 𝐵 to adjust for component loadings.  In the case that 𝐵 = 𝐴, the 

solution for the optimization problem is the set of first 𝑘 PCs derived from the PCA of 𝑋 (Zou et al., 

2006).   

 

Let 𝜆 and 𝜆1 = (𝜆1,1, 𝜆1,2, … , 𝜆1,𝑘   ) be some constants, then the SPCA criterion (Zou et al., 2006) 

minimizes 𝑓𝑋(𝐴, 𝐵, 𝜆, 𝜆1) = ‖𝑋 − 𝑋𝐵𝐴𝑇‖
𝐹

2
+  𝜆‖𝐵𝑇‖

𝐹

2
+ ∑ 𝜆1,𝑗‖𝑏𝑗‖

1
𝑘
𝑗=1  subject to 𝐴𝑇𝐴 = 𝐼𝑘 , where 

𝐵 = [𝑏1, 𝑏2, … , 𝑏𝑘].  Now, consider regressing 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛)𝑇 ∈ ℝ𝑛 on the transformed 𝑋, i.e.,  

on the set of 𝑘 (with 𝑘 ≤ 𝑝) linear transformations of 𝑋𝐵.  Under the regular (no-intercept) regression 



    
 

problem with 𝛽 as the 𝑘 × 1 vector of (regression) parameters, the objective function is to minimize, 

subject to 𝐴𝑇𝐴 = 𝐼𝑘,  

 𝑓𝑋,𝑌 (𝐴, 𝐵, 𝛽, 𝜆, 𝜆1) = ‖𝑦 − 𝑋𝐵𝛽‖
2

+ ‖𝑋 − 𝑋𝐵𝐴𝑇‖
𝐹

2
+  𝜆‖𝐵𝑇‖

𝐹

2
+ ∑ 𝜆1,𝑗‖𝑏𝑗‖

1
𝑘
𝑗=1  . (1) 

Optimization of equation (1) simultaneously minimizes the loss due to dimension-reduction in 𝑋 and 

on using a fitted regression for 𝑦.  If an intercept is included, and with 𝛽∗ = [𝛽0, 𝛽𝑇]
𝑇

, then the 

optimization problem becomes minimizing, subject to 𝐴𝑇𝐴 = 𝐼𝑘,  

    𝑓𝑋,𝑌 (𝐴, 𝐵, 𝛽∗, 𝜆, 𝜆1) = ‖𝑦 − [1  𝑋𝐵]𝛽∗‖
2

+ ‖𝑋 − 𝑋𝐵𝐴𝑇‖
𝐹

2
+  𝜆‖𝐵𝑇‖

𝐹

2
+ ∑ 𝜆1,𝑗‖𝑏𝑗‖

1
𝑘
𝑗=1  . (2) 

Suppose the optimization problem is constrained further on the loss due to dimension reduction of 𝑋 

and on the loss due to regression for 𝑦.  Then the generalized optimization problem becomes, given 

the tuning parameters 𝜆, 𝜆1 and 𝑚 = (𝑚1, 𝑚2), finding the values �̂�, �̂� and �̂�∗ for which 

(�̂�, �̂�, �̂�∗) = argmin
𝐴,𝐵,𝛽∗

{𝑚1 ‖𝑦 − [1  𝑋𝐵]𝛽∗‖
2

+ 𝑚2‖𝑋 − 𝑋𝐵𝐴𝑇‖
𝐹

2
+  𝜆‖𝐵𝑇‖

𝐹

2
+ ∑ 𝜆1,𝑗‖𝑏𝑗‖

1
𝑘
𝑗=1 } . (3) 

 

The terms in the penalized optimization in equation (3) are collectively considered as a “dimension 

reduction and variable selection penalty.”  Using the transformed independent variables 𝑋𝐵 , this 

penalty on the regression of 𝑦  yields a vector of coefficients 𝜃 = 𝐵𝛽   of the (untransformed) 

individual 𝑋′𝑠, which then gives a linear combination of the 𝑋′𝑠 with possibly non-replete (or sparse) 

coefficients.  That is, the penalty translates to a Linear and Non-replete Selection (LaNS) of the 

independent variables.  Hereafter, the optimization problem in equation (3) is referred to as the LaNS 

criterion or the LaNS optimization.  Accordingly, the equivalent bounds in the equation are referred to 

as the LaNS penalty, and solutions and models under this framework are labelled as LaNS.  An 

alternating solution for 𝐴, 𝐵, and 𝛽∗, given the values of 𝑚 = (𝑚1, 𝑚2), 𝜆, and 𝜆1, is used for the 

minimization of the LaNS criterion via the LaNS algorithm. 

 

4. Equivalence and Simulations 

 

The performance of LaNS is evaluated through simulation studies.  Assume that the data come from 3 

latent factors 𝑉1, 𝑉2 and 𝑉3.  𝑉1 and 𝑉2 are Normal and independent and 𝑉3 = 𝑓(𝑉1, 𝑉2) + 𝜔 where 𝜔 is 

Normal.  The latent factor 𝑉1 gives the most information (having high variability), closely followed by 

𝑉2 , then by 𝑉3 .  The independent variables are derived as 𝑋𝑗 = 𝑉𝑘 + 𝜀(𝑗)  where the 𝜀(𝑗)′𝑠  are 

independent and 𝑗 = 1, 2, … , 1000.  The dependent variable 𝑌 is then computed from the 𝑋𝑗′𝑠,  with 

the beta-coefficients specified to control for the relative contributions of the independent variables 𝑋𝑗′𝑠 

to the dependent variable 𝑌.  Similarly, the relative contributions of the latent factors 𝑉1, 𝑉2 and 𝑉3 to 

𝑌 are controlled.  For the high dimensional case (HD), the number of variables is set at 1,000, thus, all 

the variables 𝑋𝑗′𝑠 are included in the computation of 𝑌.  For the non-high dimensional case (NHD), 

the number of variables is set at 40, so that only the first 40 𝑋𝑗′𝑠 are considered.  The scenarios (for 

both NHD and HD) are formulated so that the independent variables most predictive of the dependent 

variable are relatively few, i.e., those independent variables are derived either from 𝑉1 or 𝑉2.   

 

The different LaNS solutions are compared to various regression methods that address 

multicollinearity or mitigate the issues associated with high dimensional inputs.  For the NHD, the 

fitted full model from LaNS is compared to those of OLS, PCR, and PCovR; for models with sparse 

coefficients, LaNS is compared to SPCR, regression with LASSO, and regression with EN; and the 

OLS regression model using selected variables from LaNS are compared to the OLS regression 

models using the corresponding selected variables from SPCR, LASSO or EN.  For the high 

dimensional cases (HDs), on the other hand, LaNS is compared to PCR, PCovR, SPCR, LASSO, EN, 

and whenever possible, to the OLS of the corresponding reduced models.   



    
 
  

The models are assessed based on their predictive ability through the sum of squared prediction error 

(SSPE).  SSPE is equivalent to the residual sum of squares in a regression fit (Chatterjee and Hadi, 

2006; Draper and Smith, 1998).  Thus, SSPE measures how close the fitted values are to the original 

values, the lower the SSPE, the higher the predictive ability of the fitted model.  Aside from prediction 

error, a BIC-type measure is also used to compare the different methods, following that of Schwarz 

(1978) and Zou et al. (2007).  The BIC penalizes the measure of predictive ability of the model using 

the number of nonzero coefficients as well as number of observations.  Thus, relative to BIC, the most 

suitable model is the most parsimonious, i.e., the model must have the smallest prediction error at the 

fewest number of predictors selected as possible, taking into consideration the inherent variability in 

the dependent variable.  While SSPE is used to compare models with same number of predictors, BIC 

is used to compare competing models with varying numbers of predictors. 

 

For both NHD and HD, the fitted model from PCR have lower predictive ability even when all 

independent variables are used in the model.  Similar to PCR, LaNS generates a fitted model with 

non-zero coefficients for all the independent variables but with greater predictive ability (SSPE and 

BIC are smallest).  PCovR dominates PCR, with SSPEs and BICs for PCovR lower than that of PCR.  

This may suggest an advantage in predictive ability of a one-step approach (PCovR) over a two-step 

approach (PCR) for dimension reduction and variable selection.  Expectedly, PCovR(0.15) improves 

on predictive ability compared to PCovR(0.85) or PCovR(0.50).   

 

LaNS offers sparse solutions for which BIC values remain lower, and for which the SSPEs are as good 

as that of PCovR(0.50) or PCoVR(0.15).  LaNS selects independent variables coming from all three 

latent factors.  Unlike EN(100) which include all 10 independent variables from the first latent factor, 

EN(.01) or LASSO which includes all but 1 from the first latent factor, and SPCR which identifies 

variables only from the first two latent factors, LaNS identifies independent variables from all three 

latent factors and gives the fitted model with highest predictive ability.  

 

Comparing the selected variables using different methods, and implementing OLS using only the 

selected variables as predictors, those variables identified by LaNS give better prediction than those 

identified by any of SPCR, LASSO, EN(0.01), or EN(100).  Similarly, LaNS provides a smaller set of 

predictors that already represents the entire set of independent variables and at the same time best 

explains the dependent variable.  If identification of a smaller set is of interest, then LaNS appears to 

be a better option than LASSO – although both give relatively the same set of independent variables, 

those identified by LaNS4 has a slightly better predictive ability than those identified by LASSO. 

 

5. Application to Real Data 

 

World Health Organization (WHO) provides data on mortality and related indicators for years around 

2010 (census year for most countries).  A quality of life index (QoLI) was constructed based on 

morality.  A total of 106 variables from environment, lifestyle, health care, health status, health policy, 

and morbidity indicators are then used to model QoLI.  The LaNS algorithm was used to come up with 

a final model. 

 

The final model accounts for 71% of the total variation in QoLI, with identified determinants as 

follows:  outdoor air pollution, UV radiation, consumption on alcohol, improved sanitation, female 

blood pressure, immunization coverage among 1-year-olds, and expenditure on health.  The 

standardized coefficients suggest that the quality of life is primarily explained by health condition of 

women (measured by blood pressure), welfare of children (measured by immunization coverage), and 

the government spending on health. 

 

 



    
 

6. Conclusions 

 

The LaNS procedure estimates a model that is sparse while it also exhibits optimal predictive ability, 

addressing multicollinearity issues and/or ill-conditioning in regression analysis with high dimensional 

predictors.  Dimension reduction is implemented such that prediction error is minimized, thus, the 

selected variables (with non-zero estimates of regression coefficients) become the “best” predictors for 

the dependent variable, i.e., the fitted model is the most optimal for both the dimensionality of the 

inputs and the prediction of the dependent variable.  The LaNS procedure is capable of fitting models 

with independent variables potentially coming from different latent factors.  For both n>p and p>>n, 

the fitted LaNS models with sparse regression coefficients capture “representatives” from the different 

latent factors, as evident from the simulations. 
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