On the choice of initial seed values for the Lloyd’s k-means algorithm

Kalev Pärna
University of Tartu, Tartu, Estonia – kalev.parna@ut.ee

This paper is about efficient ways of converting continuous data into a compact discrete form. In information theory such a conversion is called quantization and it is used for transmission of data through a discrete channel which is capable of admitting a finite number \(k \) of values, only. In statistics and data mining the same method is called \(k \)-means clustering and its aim is to partition a data set into \(k \) non-overlapping clusters by minimizing the within-sum of squares of deviations from their respective cluster centers (\(k \)-means). Efficient calculation of \(k \)-means, especially in multivariate setting, is still a problem which needs further research. Well-known Lloyd’s iterative method for calculation of \(k \)-means is sensitive with respect to initial values and, therefore, much research has been focused on the choice of initial seed values of \(k \)-means. In this paper we propose to use certain theoretical results about asymptotic density of points of \(k \)-means in the process where the number \(k \) grows infinitely. Namely, it is known that for large values of \(k \) the optimal \(k \) points are distributed in accordance with density \(f^*(x) \) which is a power function of the initial data density \(f(x) \) (for example, in one-dimensional case \(f^*(x) \) is proportional to \(f(x)^{1/3} \)). Our main idea is to use this asymptotic distribution for placement of initial seeds of \(k \)-means. In order to benefit from the asymptotic theory, we propose a 3-steps method for calculation of \(k \)-means, consisting of 1) estimation of \(f^*(x) \) from the data, 2) generation of \(k \) points from \(f^*(x) \), and, 3) using these points as initial values in the Lloyd’s iterative algorithm.

Keywords: quantization; asymptotic distribution of k-means, Lloyd’s algorithm.