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The chromosome copy number variation (CNV) is the deviation
of genomic regions from their normal copy number states, which may
associate with many human diseases. Current genetic studies usually
collect hundreds to thousands of samples to study the association
between CNV and diseases. CNVs can be called by detecting the
change-points in the means from sequences of measurements with
noise. Although multiple samples are of interest, the majority of the
available CNV calling methods are single sample based. Only a few
multiple sample methods were proposed. They all used scan statis-
tics similar to the circular binary segmentation (CBS) algorithm that
is computationally expensive, and were designed toward either com-
mon or rare change-points detection. In this paper, we propose a novel
multiple sample method by adaptively combining the scan statistic of
the screening and ranking algorithm (SaRa), which is computation-
ally efficient and able to detect both common and rare change-points.
We prove that asymptotically this method can find the true change-
points with certainty and show in theory that multiple sample meth-
ods are superior to single sample methods when shared change-points
are of interest. Additionally, we give extensive simulation studies and
a real data application to examine the performance of our proposed
method.

1. Introduction. The chromosome copy number refers to the number
of copies of a genomic deoxyribonucleic acid (DNA) region. In the human
genome, except for the sex chromosomes, the DNA copy numbers are nor-
mally two, with one copy from the mother and the other copy from the
father. Copy number variation (CNV) can therefore be defined as the devi-
ation from the “normal” copy number for a region of genomic DNA, which
includes both duplication and deletion. In general, CNVs can be either gen-
erated from de novo mutation or inherited from the ascendants. De novo
CNVs can possibly be long in length and unique for different individuals.
For example, cancer CNVs as a type of de novo CNVs can span as long as a
whole chromosome, and can be very heterogeneous across different patients.
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Inherited CNVs, on the contrary, are generally short in length, shared by
many people, and aligned well across samples. Recent studies have shown
that the CNVs can play important roles in human diseases. For example,
de novo CNVs are found to be strongly associated with diseases such as
autism (Sebat et al., 2007) and cancer (Pollack et al., 2002); while inherited
CNVs are shown to be associated with Crohn’s disease (McCarroll et al.,
2008) and the resistance to HIV (Gonzalez et al., 2005). To study the as-
sociation of CNV and human diseases, it is critical to identify CNV regions
in each sample collected under the study. Over the last decade, tremendous
amount of efforts have been made to study the CNVs by utilizing the high-
throughput technologies, such as array-comparative genomic hybridization
(aCGH), single-nucleotide polymorphism (SNP) array, and next-generation
sequencing (NGS). Because the data produced by these technologies in-
evitably contain noise, various statistical methods have been proposed and
applied to call CNV regions from the noisy data.

1.1. Statistical model. Regardless of the technology or platform, the copy
number calling problem can be formulated in the following way. Given N
samples and T markers, the raw CNV intensities are measured for each
sample on all the markers. Denote the intensities measured for sample i by
Yi = (Yi,1, Yi,2, . . . , Yi,T )T for 1 ≤ i ≤ N . We assume

(1.1) Yi = µi + εi, 1 ≤ i ≤ N,

where µi = (µi,1, µi,2, . . . , µi,T )T is a piecewise constant mean vector for the
intensities of sample i, and the errors εi ∼ MVN(0, σ2i I). Then τ is a change-
point for sample i if µi,τ 6= µi,τ+1. We can further assume that for sample i,
there are Ji change-points which we denote by 0 < τi,1 < τi,2 < · · · < τi,Ji <
T . The goal is to estimate all the change-points θi = {τi,1, τi,2, . . . , τi,Ji} for
each sample i. Then CNV regions can be called between these change-points.

Moreover, we denote the collection of all the change-points in all the sam-
ples as θ = {τ1 < · · · < τJ} and let δi,j = µi,τj+1−µi,τj be the mean change
at point τj for sample i. For each change-point τj , we say that sample i is
a “carrier” when δi,j 6= 0. Note that estimating change-points for individual
samples is equivalent to estimating θ and identifying individual carriers of
each change-point. The method that we propose in this paper is based on
this strategy.

1.2. Current methods. Currently, various methods have been proposed
for the CNV calling problem. These methods can be categorized into the
single sample methods and the multiple sample methods according to the
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strategies that they take. The single sample methods, on the one hand, as-
sume that the change-points in different samples are completely irrelevant
and independent, and apply the CNV calling algorithm to each of the in-
dividual samples repeatedly. The multiple sample methods, on the other
hand, assume that certain change-points may be shared by a proportion of
the samples, and call the shared change-points by utilizing information from
multiple samples.

Because of the complexity of the multiple sample problem, most of the
current methods focus on a single sample. Yao (1988) and Yao and Au (1989)
proposed to search for the combination of change-points that minimize a BIC
score, and they showed the consistency of the estimates. Circular binary seg-
mentation (CBS) algorithm (Olshen et al., 2004; Venkatraman and Olshen,
2007) recursively finds segments with changed means, and is one of the com-
monly used single sample methods. The scan statistic of CBS given as follows
is also widely adopted by other methods. Let Si,t be the partial sums of se-
quence Yi (i.e. Si,t =

∑t
j=1 Yi,j), Ȳi = Si,T /T , and σ̂2i =

∑
(Yi,j − Ȳi)2/T .

The scan statistic of CBS algorithm on a region (s, t) is defined as:

(1.2) Ui(s, t) =
(Si,t − Si,s)/(t− s)− (Si,T − Si,t + Si,s)/(T − t+ s)

σ̂i
√

1/(t− s) + 1/(T − t+ s)
.

The CBS algorithm is based on the test statistic Ui,C = max1≤s<t≤T Ui(s, t).
Another approach uses the `1 penalization methods in order to introduce
sparsity to the segment means or the differences in these means (Huang et al.,
2005; Tibshirani and Wang, 2008). Niu and Zhang (2012) demonstrated
that local information is more efficient than the global information for high-
throughput data for change-points detection. They also proposed a new
screening and ranking algorithm (SaRa) using the scan statistic

(1.3) Di(t, h) =
1

h

( h∑
k=1

Yi,t−k+1 −
h∑
k=1

Yi,t+k

)
,

where h is the bandwidth. Because Di(t, h) is calculated from only the local
information within the 2h window, the complexity of the algorithm is linear
in the length of the sequence T . Other than the change-point models, other
models such as the Hidden Markov Model (HMM) are also applied to the
CNV problem. For example, PennCNV (Wang et al., 2007) and Birdsuite
(Korn et al., 2008) are two of the most popular HMM methods. Because
this paper focuses on the change-point models, we will not discuss the other
models in detail.

It was pointed out that different people can share CNV regions (Zhang
et al., 2010). In terms of the change-point model, some of the change-points
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are shared by different samples, and hence several multiple sample methods
have been developed to find those shared change-points. Zhang et al. (2010)
proposed taking the sum of squares of the scan statistics from individual
samples to find the common change-points. Siegmund, Yakir and Zhang
(2011) further extended the method by using a weighted sum of squares
statistic, which increases the power for rare change-point detection when
prior information on the carrier proportions is available. Instead of using the
sum-based statistics, Jeng, Cai and Li (2013) summarized the scan statis-
tics based on the higher criticism method which can detect both common
and rare CNVs (Cai, Jeng and Jin, 2011). It is noteworthy that the major
difference among these multiple sample methods is the way that multiple
scan statistics are combined. The scan statistics used by those methods for
individual samples, however, are virtually the same as the statistic Ui(s, t)
of the CBS algorithm.

1.3. Motivations. Despite the success of the aforementioned methods,
there are several aspects of them that either need to be addressed or could
be improved upon. Firstly, the multiple sample methods that we reviewed
all use the same scan statistics as in the CBS algorithm which is based on
global information. As a result, these methods might be statistically pow-
erful for using all the available information, but they all suffer from higher
computational complexities, especially when applied to the high-throughput
genomic data. To overcome this computational burden, we propose a gener-
alization of SaRa to accommodate multiple samples. The proposed method
enjoys similar computational efficiency and statistical properties as the sin-
gle sample SaRa.

Secondly, we noted that the available methods for combining multiple
scan statistics are either suitable for finding common change-points but not
powerful in finding rare ones (in terms of the proportion of carriers), or vice
versa, or rely on prior knowledge or assumption of the carrier proportion.
Thus, it is desirable to develop a unified method that is robust to the change-
point proportion and does not require any prior knowledge or assumption.
For this purpose, we propose an adaptive Fisher’s method which adaptively
combines the scan statistics according to their likeliness of being from a
change-point carrier. We show that, regardless of the carrier proportion,
this method has a good power of finding change-points.

Lastly but not the least, despite the many multiple sample methods that
have been proposed, a justification is needed yet missing to support their
use instead of the single sample methods. In this paper, we provide both
theoretical and numerical comparisons between our proposed method and
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a single sample method, which show that the power of multiple sample
methods is indeed higher than that of a single sample method.

This paper is organized as follows. In Section 2, we will present our method
in detail. The theoretical properties of the proposed method are discussed
in Section 3. The numerical results will be presented in Section 4, and a real
data analysis example will be given in Section 5.

2. Method.

2.1. SaRa for a single sample. First, let us revisit the SaRa method
proposed by Niu and Zhang (2012). For a single sample i, given a bandwidth
h, the scan statistic Di(t, h) can be calculated for every position t from (1.3).
Define t as a local maximizer if |Di(t, h)| ≥ |Di(t

′, h)| for all t′ ∈ (t−h, t+h).
Let LMi be the set of all local maximizers found for sample i. Then the
change-points for sample i can be estimated as θ̃i = {τ̃i,1 < τ̃i,2 < · · · <
τ̃i,J̃i} ⊆ LMi by a thresholding rule

|Di(τ̃ , h)| > λi.

The threshold λi can be obtained asymptotically or from the simulated null
distribution.

For any t, if there is no change-point in window (t−h+1, t+h), it is easy to
know that Di(t, h) ∼ N(0, 2hσ

2
i ). Therefore, we can define the standardized

scan statistic as

(2.1) D̃i(t, h) =

√
h

2σ̂i
Di(t, h),

where σ̂i is an estimate of σi. By assuming that the number of change-points
in sample i, Ji << T , the estimation of σ̂i is trivial. For example, we can
use the sample standard deviation of Yi as σ̂i.

2.2. Combining test statistics from multiple samples. In order to com-
bine information from multiple samples to help identify shared change-
points, we need to combine the single sample statistics across multiple sam-
ples. A natural choice is to take the sum of squares of D̃i(t, h) across samples
as Zhang et al. (2010) did and define the multiple sample scan statistic

(2.2) W Sum(t, h) =
N∑
i=1

D̃2
i (t, h).
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The weighted sum of squares (Siegmund, Yakir and Zhang, 2011) is an al-
ternative method, for which we define

(2.3) WWSum(t, h) =

N∑
i=1

wπ0 [D̃2
i (t, h)]D̃2

i (t, h),

where wπ0(x) = exp(x/2)/[(1 − π0)/π0 + exp(x/2)], and π0 is the carrier
proportion that is assumed known.

The two methods above combine the scan statistics D̃i(t, h) directly. We
can also define combining statistics based on the p-values pi(t, h) = 2{1 −
Φ[|D̃i(t, h)|]} or their order statistics p(i)(t, h) in ascending order. Traditional
methods include Fisher’s method (Fisher, 1925) defined as

(2.4) WFisher (t, h) = −
N∑
i=1

log pi(t, h),

and Stouffer’s method (Stouffer et al., 1949)

(2.5) W Stouffer (t, h) =
N∑
i=1

Φ−1[1− pi(t, h)].

The higher criticism statistic (Donoho and Jin, 2004; Cai, Jeng and Jin,
2011) can be defined as

(2.6) WHC (t, h) = max
1≤i≤N

|HCi(t, h)| ,

where

HCi(t, h) =
√
N

i/N − p(i)(t, h)√
p(i)(t, h)[1− p(i)(t, h)]

.

In practice, we are interested in finding change-points that are shared by
either many of the samples or just a few of the samples; in other words, we
would like to find both commonly and rarely occurring change-points. The
sum of squares statistic, on the one hand, is näıve and easy to implement, but
only good in capturing change-points that are shared by many samples. The
higher criticism statistic, on the other hand, is able to detect rare change-
points; however, because it is based on an adaptively chosen single order
statistic, its power for detecting common change-points with a limited sam-
ple size is lower than the sum of squares statistic in practical applications.
Although the weighted sum of squares statistic can detect both common
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and rare change-points, it depends on the tuning parameter π0 whose choice
relies on the prior assumptions of the change-points. The Fisher’s method is
well-known for being powerful and asymptotically Bahadur optimal (Littell
and Folks, 1971, 1973). However, when the change-points are rare, the statis-
tical power of Fisher’s method will be compromised by the non-carriers. The
same problem also exists for Stouffer’s method. Therefore, we propose a new
summary statistic, which can detect both common and rare change-points
and does not require prior knowledge or assumption.

The idea of our approach is to adaptively combine the p-values so that
only the ones that most likely come from the carriers are combined. In the
same spirit, Li and Tseng (2011) proposed an adaptively weighted Fisher’s
statistic to down-weight the non-carriers, but it is time consuming and in-
volves exhaustive search for the weights. We propose a more concise adaptive
Fisher’s statistic as follow. For given t and h, let

Xi(t, h) = − log pi(t, h),

and
X(i)(t, h) = − log p(i)(t, h).

We first define

Vi(t, h) =
i∑

j=1

X(j)(t, h).

Under the null hypothesis, Xi(t, h)
iid∼ EXP(1), and X(1)(t, h) ≥ · · · ≥

X(N)(t, h) are the decreasing ordered statistics. Let X(N+1)(t, h) = 0 and
ξi(t, h) = i[X(i)(t, h) − X(i+1)(t, h)] for 1 ≤ i ≤ N . It can be shown that

ξi(t, h)
iid∼ EXP(1) under the null. Thus

Vi(t, h) =

i∑
j=1

N∑
k=j

ξk(t, h)/k =

N∑
k=1

w(k, i)ξk(t, h),

where w(k, i) = min(1, i/k). The standardized Vi(t, h) can be calculated as

Ṽi(t, h) =
Vi(t, h)−

∑N
k=1w(k, i)√∑N

k=1w
2(k, i)

.

Our proposed adaptive Fisher’s statistic for multiple samples is defined as

WAF (t, h) = max
1≤i≤N

|Ṽi(t, h)|.
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Remark 1. In the CNV detection problem, we are mainly interested in
detecting signals arising from shifted means and/or increased variances. In
other words, we believe that the p-values for signals are smaller than their
null distribution. Therefore, the adaptive Fisher’s statistic can also be defined
as follow to (i) consider only the smaller half of the p-values and (ii) test
whether p-values are smaller than expected,

(2.7) WAF (t, h) = max
n0≤i≤N/2

Ṽi(t, h),

where n0 is a tuning parameter to stabilize the statistic. Similarly, we could
modify (2.6) into

(2.8) WHC (t, h) = max
n0≤i≤N/2

HCi(t, h).

For the reason stated above, we apply (2.7) and (2.8) for CNV detection.

2.3. SaRa for multiple samples. In the previous section, we defined six
scan statistics includingW Sum(t, h),WWSum(t, h),WFisher (t, h),W Stouffer (t, h),
WHC (t, h) and WAF (t, h) for the multiple sample problem. By using one of
those six statistics, we now extend the SaRa method for multiple samples.
Let {W (t, h) : t = 1, . . . , T} be the sequence of combined statistics using
any of the six combining methods with some bandwidth h. Then we can
find the local maximizers of the sequence, and select a subset of the local
maximizers by thresholding, which is the same technique used in the SaRa
for single samples. The detailed algorithm is described as below.

Algorithm. SaRa for multiple samples:

1. Given a bandwidth h, calculate individual scan statistics D̃i(t, h) using
(2.1), for 1 ≤ t ≤ T and 1 ≤ i ≤ N .

2. Calculate the summary scan statistic W (t, h) using (2.2), (2.3), (2.4),
(2.5), (2.8), or (2.7).

3. Find the set of local maximizers LM = {t : W (t, h) > W (t′, h),∀t′ ∈
(t− h, t+ h)}.

4. Given a threshold λ, estimate the shared change-points as a subset of
LM, θ̂ = {τ̂1 < τ̂2 < · · · < τ̂Ĵ} ⊆ LM, that satisfies W (τ̂j , h) > λ for

1 ≤ j ≤ Ĵ , where Ĵ is the number of estimated shared change-points.

Remark 2. In the calculation of D̃i(t, h), if Yi,k with k < 1 or k > T is
referred to, use Ȳi instead. This only happens when t is near either end of a
sequence.
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Remark 3. To determine the threshold λ, we can simply simulate the

null distribution of W (t, h)by assuming that Yi
iid∼ MVN(0, I) for 1 ≤ i ≤ N .

Because W (t, h) is calculated locally and T >> h, we can simulate the null
distribution of W (t, h) using any length T ′ that satisfies T ′ >> h. Let F̂ (·)
be the simulated empirical distribution function of W (t, h), where t is a local
maximizer (or any point in the sequence). Given a significance level α, the
threshold can be calculated as λ = F̂−1(1− α).

2.3.1. Multiple-bandwidths SaRa. The selection of bandwidth h may af-
fect the result. As described by Niu and Zhang (2012), a larger h may
increase the statistical power. However, if h is too large such that more
than one change-points are included in the window, the algorithm will yield
unreliable results. In practice, we use multiple bandwidths to ease this diffi-
culty. Given a handful of bandwidths h = {h1 < h2 < · · · < hB}, where B is
the number of different bandwidths, we can estimate the change-points using
each of the bandwidth in h, and get θ̂(1), θ̂(2), . . . , θ̂(B). Then the candidates
for the shared change-points are estimated by θ̂ =

⋃B
b=1 θ̂

(b). However, since
different bandwidths may yield change-points with slightly different posi-
tions, some change-points in θ̂ may be redundant. Besides, the included
change-points may not be substantiated. Such points will be excluded as
described in Section 2.3.2.

2.3.2. Change-point carrier identification. Recall that the shared change-
points are detected through the summary scan statistics. Consequently, we
do not know which individuals carry a particular change. Hence, it is neces-
sary and useful to identify those carriers of a given change-point. A simple
approach is to test the means on two sides of a candidate change-point, but
as discussed by Zhang et al. (2010), the existence of trends that are unrelated
to the change-point could cause slight shifts in the local means along the
chromosome, making it difficult to differentiate the real change-point from a
shift caused by a trend. This can be resolved by thresholding as follows for
a given sample i and the candidate change-points θ̂ = {τ̂1 < τ̂2 < · · · < τ̂Ĵ}.

Algorithm. Carrier identification:

1. Set Ĵi = Ĵ and τ̂i,j = τ̂j for j = 1, . . . , Ĵi. Denote θ̂i = {τ̂i,j , j =
1, . . . , Ĵi}.

2. Let τ̂i,0 = 0 and τ̂i,Ĵi+1 = T . Calculate the segment means mi,j =∑τ̂i,(j+1)
t=τ̂i,j+1 Yi,t

τ̂i,(j+1)−τ̂i,j
for 0 ≤ j ≤ Ĵi.

3. Calculate the estimated jump size at each change-point di,j = mi,j −
mi,(j−1) for 1 ≤ j ≤ Ĵi.
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4. Find the smallest absolute jump size j∗ = arg min1≤j≤Ĵi |di,j |. If |di,j∗ |
is less than a pre-specified threshold η, remove the j∗-th change-point
by replacing θ̂i with θ̂i\{τ̂i,j∗} and replacing Ĵi with Ĵi − 1, and then
repeat the procedure from step 2; otherwise, estimate all the individual
change-points for sample i by θ̂i.

Remark 4. We suggest using η = 2σ̂i
√

2/h in practice. For multiple-
bandwidths SaRa, we suggest using η = 2σ̂i

√
2/min{h}.

Remark 5. If no individual carrier is identified for a particular change-
point, we will remove this change-point from the shared set θ̂, further im-
proving the precision and reliability of θ̂.

3. Statistical properties. In this section, we show the theoretical
properties of multiple sample SaRa from two aspects. First, we prove the
sure coverage property as the sample size N increases. That is to say, the
union of h-neighborhoods of the elements in θ̂ estimated as in Section 2.3
covers all the true change-points in θ with probability tending to one. Sec-
ond, we show that SaRa for multiple samples is advantageous to a single
sample method in the sense that its asymptotic power for detecting change-
points is higher.

Throughout this section, we assume that the sequence length T and the
set of change-points θ = {τ1, . . . , τJ} are fixed. For convenience in notation,
we denote τ0 = 0 and τJ+1 = T , and we let L = min1≤j≤J+1(τj − τj−1).
Recall that we denote as δi,j the mean change of sample i at τj . Here, we
assume for simplicity that, for each 1 ≤ j ≤ J , δ1,j , . . . , δN,j are independent
and

δi,j

{
= 0, with prob. (1− πj),
∼ N(∆j , (η

∗
j )

2), with prob. πj ,

where πj > 0, ∆j , and (η∗j )
2 are fixed and assumed known. This corresponds

to a practical scenario that the carriers of a common CNV constitute a
certain proportion of the population and the mean intensity change in the
CNV region may vary for each carrier. We also assume that σ21, . . . , σ

2
N are

known, then without loss of generality, we can assume that they are all equal
to 1. Moreover, following Niu and Zhang (2012), we call a point t h-flat if
there is no change-point in the interval (t− h, t+ h). Then we have

D̃i(t, h) ∼
{
N(0, 1), if t is h-flat,

(1− πj)N(0, 1) + πjN(−∆j

√
h/2, η2j ), if t = τj ,

where η2j ≡ (η∗j )
2 + 1.
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Theorem 1. Using SaRa for multiple samples with any of the following
combining methods: W Sum , WWSum , WFisher , W Stouffer , WHC , and WAF ,
there exist suitable h and λ such that the estimated change-points θ̂ satisfy

lim
N→∞

P ({Ĵ = J} ∩ {θ ⊂ θ̂ ± h}) = 1,

where θ̂ ± h ≡
⋃Ĵ
j=1(τ̂j − h, τ̂j + h).

The previous theorem states that a threshold λ exists to ensure the sure
coverage property of SaRa for multiple samples. However, the choice of such
a threshold depends on the underlying truth which is generally unknown.
Therefore, in practice, the threshold is usually chosen so that at a flat-point
or at a local miximizer, the scan statistic goes above the threshold with a
certain probability, say α. We show in the next theorem that the “power” of
detecting a true change-point, in other words the probability that the scan
statistic at a true change-point exceeds this threshold, tends to 1 pretty fast.

In comparison, we consider a näıve single sample procedure that calls
change-points in single samples first and then combines the obtained change-
points in all the samples. In other words, for some λ∗, whenever |D̃i(t, h)| >
λ∗ for any i, we claim that t is a change-point for sample i and thus a
common change-point. This is equivalent to using the maximum statis-
tic of {D̃i(t, h)}Ni=1 and claiming that there is a change-point at t when
maxi |D̃i(t, h)| > λ∗. Note that due to multiplicity, controlling the false pos-
itive rate for individual samples is not enough. Instead, we need to choose
λ∗ such that P (maxi |D̃i(t, h)| > λ∗) = α for an h-flat point t. We show in
the following theorem that the power of detecting a true change-point tends
to 1 at a rate slower than the multiple sample methods.

Theorem 2. (a) Use SaRa for multiple samples with any of the fol-
lowing combining methods: W Sum , WWSum , WFisher , W Stouffer , WHC , and
WAF , and choose the threshold λ such that for an h-flat point t we have
P (W (t, h) > λ) = α with a specific level α. Then for any j = 1, . . . , J ,
P (W (τj , h) > λ) tends to 1 at least at an exponential rate in N .

(b) Use the single sample procedure that claims a common change-point at
t when maxi |D̃i(t, h)| > λ∗ where λ∗ is chosen such that P (maxi |D̃i(t, h)| >
λ∗) = α for an h-flat point t. Then for any j = 1, . . . , J , P (maxi |D̃i(τj , h)| >
λ∗)→ 1 as N →∞ but with a rate slower than the exponential rate in N .

Remark 6. We shall point out that the convergence rate for the single
sample method in Part (b) of the theorem depends on η2j . The convergence is

slower for smaller η2j . At the extreme case when η2j = 1, i.e. when the mean
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changes for carriers of a change-point are fixed, the convergence gets much
slower.

The two theorems in this section only discuss the scenario that, when
subject i is a carrier of τj , D̃i(τj , h) has an increased variance (η2j ≥ 1) and/or
a changed mean. Some of the results can be generalized to the scenario that
η2j might be less than 1. For example, the results for WHC and WAF still
hold, whereas the other multiple sample methods could work but need to be
modified such that both increased and decreased mean in the scan statistics
can be detected. However, for the single sample method, the results are very
different. The power of detecting τj as in Theorem 2 falls below α when
η2j < 1, suggesting that the single sample method is quite sensitive to the
model assumptions. This is another reason why the multiple sample methods
are favorable to the single sample method.

4. Numerical result.

4.1. Power for detecting a single change-point. To study the power of
SaRa for multiple samples, we simulated simple datasets with only one
change-point shared by a proportion of the samples. The datasets were sim-
ulated in the following procedure.

1. Let N be the number of samples, T be the length of the sequence, δ
be the jump size, and π∗ be the proportion of samples that carry the
change-point.

2. For 1 ≤ i ≤ dNπ∗e, sample Yi,j
iid∼ N(0, 1) if 1 ≤ j ≤ T/2, and sample

Yi,j
iid∼ N(δ, 1) if T/2 < j ≤ T . Here, d·e is the ceiling function.

3. For dNπ∗e < j ≤ N , sample Yi,j
iid∼ N(0, 1) for 1 ≤ j ≤ T .

Different combining scan statistics were considered (for WWSum , we set
π0 = 0.01; for WHC and WAF , n0 = 4 was used). A shared change-point was
called when at least one local maximizer of the scan statistics falls between
50−h and 50+h, and exceeds the 99% quantile of the null distribution of the
local maximizers. The simulation results are a summary of 1000 replications.

To demonstrate how the power changes according to N when detecting
both rare and common change-points, we simulated two scenarios with N ∈
{100, 200, . . . , 1000}. For the rare change-point scenario, we set π∗ = 0.01,
δ = 1, and h = 20; for the common change-point scenario, we set π∗ = 0.2,
δ = 0.5, and h = 10. The parameters were selected to enhance the differences
between methods.

Figure 1(a) compares the power of different methods for detecting a rare
change-point with carrier proportion π∗ = 0.01. As expected, the sum of
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squares statistic, Fisher’s statistic, and Stouffer’s statistic have the lowest
statistical power, because they combine all of the scan statistics which con-
tain a large proportion (99%) of noises. On the contrary, using the maximum
test statistic as an extension of the single sample methods as described in
Section 3 enjoys a reasonable statistical power. However, its power increases
very little as N increases, because only the single strongest test statistic
is used, which is a waste of information. This result is consistent with the
theoretical conclusion of Theorem 2. Similar to the observation in Jeng, Cai
and Li (2013), the higher criticism statistic has a relatively good statistical
power in detecting rare signals, and the power increases as N increases. Our
proposed adaptive Fisher’s statistic performs the best among the methods
under comparison. Even though the prior information π0 = 0.01 is correctly
specified for the weighted sum of squares statistic, its power is slightly lower
than that of the adaptive Fisher’s method.

Figure 1(b) compares those methods in terms of the power for detecting
a common change-point with carrier proportion π∗ = 0.2. As expected, the
sum of squares statistic and Fisher’s statistic have the best statistical power.
Our adaptive Fisher’s statistic and Stouffer’s statistic perform similarly with
slightly lower power. Weighted sum statistic, higher criticism statistic, and
maximum statistic have the lowest power. Similar to the rare change-point
case, the maximum statistic does not benefit much from the increase in the
sample size.

To display the power of different methods as π∗ changes, we also simulated
data using π∗ ∈ {0, 0.01, 0.02, . . . , 0.25}, N = 100, and δ = 1. Moreover, to
illustrate how the adaptive Fisher’s statistic and higher criticism statistic
adapt to different carrier proportions, we calculated the peak positions of
these two statistics as π∗ changes, which are the maximizer indices of equa-
tions (2.7) and (2.8) divided by N .

Figure 2(a) shows the power of different methods with bandwidth h = 10.
Similar to our previous observation, maximum statistic, higher criticism, and
weighted sum of squares statistic only perform well for small π∗, whereas
the sum of squares and Fisher’s statistics only perform well for large π∗.
Stouffer’s statistic performs good only when π∗ gets close to 0.25, which is
due to its well-known property of “robustness” against a few “outliers”. Only
our adaptive Fisher’s statistic enjoys competitive statistical power no matter
π∗ is small or large. To illustrate how the adaptive Fisher’s statistic works,
we show in figure 2(b) the average peak positions of our adaptive Fisher’s
statistic and the higher criticism statistic, which can be interpreted as the
proportions of scan statistics that contribute to the combined statistics.
We can see that the proportion of scan statistics that contributes to the
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adaptive Fisher’s statistic tends to increase as π∗ increases. This trend is
even stronger when the larger bandwidth h = 20 is used. On the contrary,
the higher criticism method tends to select a much smaller proportion of
p-values to combine, which can partly explain why it is under-powered and
does not perform well enough when π∗ gets large.
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(a) Power for detecting a single rare change-point.
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(b) Power for detecting a single common change-point.

Fig 1. Power of different methods for detecting a single rare or common change-point as
N changes from 100 to 1000. In (a), a single rare (π∗ = 0.01) change-point was simulated
and detected using δ = 1 and h = 20; in (b), a single common (π∗ = 0.2) change-point
was simulated and detected using δ = 0.5 and h = 10.
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(a) Power of different methods as π∗ changes.
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(b) Average adaptive peaks of adaptive Fisher’s method and higher criticism as π∗

changes.

Fig 2. Simulation result for single change-point detection as π∗ changes from 0 to 0.25.
N = 100 and δ = 1 were used for the simulation. The powers of the seven combining
methods (with h = 10) are compared in (a). The average adaptive peak position of adaptive
Fisher’s statistic and higher criticism statistic are compared in (b), where the dotted line
shows the true proportion of sample carriers.

4.2. Simulation with multiple changes.

4.2.1. Data without trend. We further simulated data from a more real-
istic model to compare our method and some existing ones. In each of the
1000 replications, we simulated a dataset of 500 SNPs and 1000 samples.
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The detailed simulation procedure is described below.

1. First, simulate the mean signal µi without noise. For 1 ≤ i ≤ 1000 and
1 ≤ t ≤ 500, and set µi,t to 0 except for the following change-regions
in their carriers.

(a) Region 1: 28 ≤ t ≤ 54 (length is 27), set µi,t = δ1 = 2.58 if
sample i is a carrier, the carrier proportion π1 = 0.02.

(b) Region 2: 116 ≤ t ≤ 130 (length is 15), set µi,t = δ2 = −1.92 if
sample i is a carrier, the carrier proportion π2 = 0.05.

(c) Region 3: 222 ≤ t ≤ 306 (length is 85), set µi,t = δ3 = 1.74 if
sample i is a carrier, the carrier proportion π3 = 0.1.

2. Add random noise to the mean signal. Simulate Yi = µi + εi for
1 ≤ i ≤ 1000, where εi ∼ MVN(0, I).

Figure 3 displays five representative examples of individual sequences,
and there are a total of 6 unique and shared change-points. We compared
five methods: a fast implementation of CBS (fast-CBS) from Venkatraman
and Olshen (2007), CBS with post hoc subset selection for the change-
points using BIC (CBS-SS), multiple-bandwidth SaRa for single samples
(m-SaRa), multiple-sample CBS (Zhang et al., 2010), and our proposed
method (multiple-sample m-SaRa, α = 0.001 was used when determining
λ).

Table 1 presents the number of shared change-points detected by each of
the five methods. Multiple-sample CBS and our method correctly detected
exactly 6 change-points in all replications. Tables 2 provides the details of
the performance for each method (by row) in detecting each change-point
(by column). Tables 2(a) and 2(b) offer the average numbers of true and
false positives for each of the six change-points, respectively. Because the
single sample methods do not detect the change-point positions as accu-
rately as the multiple sample methods, for the single sample methods, we
treat the change-point as if it is a true positive provided that it falls in a
small neighborhood of the true position. From these tables, we can see that
our proposed method performed the best in terms of both sensitivity and
specificity among the five methods.

4.2.2. Data with trend. We now evaluate how the change-point detection
could be affected by underlying trends in the data that are unrelated to
change-points. To this end, we simulated data by introducing a systematic
trend. Otherwise, the rest of the simulation procedure was the same as that
in Section 4.2.1. Specifically, we simulated Yi by adding both random noise

Proceedings of the 60th ISI World Statistics Congress, 26-31 July 2015, Rio de Janeiro, Brazil p.15

                            16 / 29



 

MULTIPLE SAMPLE SARA 17

−4
−2

0
2
4

−4
−2

0
2
4

−4
−2

0
2
4

−4
−2

0
2
4

−4
−2

0
2
4

●
●
●

●

●

●
●

●
●
●
●●

●

●●

●●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●
●
●

●

●

●
●

●●●●

●
●●

●

●●

●

●
●

●

●●●

●

●

●
●
●

●

●

●
●

●
●
●

●
●●
●
●●●

●

●

●
●

●

●

●

●●

●

●
●
●●

●
●

●●

●

●
●

●

●●
●
●●

●
●
●

●

●
●
●●●

●
●

●

●●

●
●
●
●
●

●

●

●

●●
●

●

●●

●
●
●

●

●

●

●
●●
●

●●

●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●●
●●
●
●
●

●

●
●

●

●
●

●●
●

●
●

●

●
●●

●●

●

●

●

●●

●●
●●
●

●

●

●

●
●●●

●●

●

●

●

●

●
●
●

●●

●●
●

●
●
●●

●

●
●

●

●

●

●

●

●
●
●●
●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●●

●

●

●
●

●
●

●

●

●

●

●●●
●

●●

●
●●
●
●
●

●

●●
●

●

●
●

●

●●●
●

●
●●

●
●

●

●
●●

●●

●

●

●
●
●●
●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●
●●
●
●
●

●

●

●
●

●

●
●●
●
●

●●●

●

●●

●

●
●

●
●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●

●

●

●
●●
●●●

●

●●

●

●

●

●
●

●

●

●

●
●
●●
●

●

●

●●●●

●●

●

●

●

●

●

●
●

●

●

●●
●

●
●●

●

●

●

●

●

●

●●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●

●

●

●

●

●
●

●
●
●

●
●
●●

●

●●●

●

●●●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●●

●●
●

●

●
●
●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●
●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●
●●●

●

●

●
●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●
●●

●

●
●
●
●

●●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●●
●
●
●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●●
●

●

●
●
●
●●
●

●

●
●
●
●

●

●
●
●

●

●

●
●

●

●●
●

●
●

●

●●

●

●

●●
●
●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●●●

●
●●

●

●

●
●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●
●●
●

●●
●

●
●

●

●

●●●
●

●

●
●

●

●

●
●
●

●●

●

●●
●

●

●

●

●
●
●

●●●●
●

●

●
●●

●

●

●

●
●
●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●●
●
●
●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●

●
●●

●●●

●
●●

●●

●
●

●

●

●
●

●

●
●
●●●

●
●

●
●

●

●

●●
●

●
●

●

●

●●
●

●

●●

●●●

●
●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●
●●
●
●
●
●●

●

●

●

●

●

●●
●
●
●●

●
●
●●
●
●
●
●

●
●

●

●

●●
●

●

●●●
●●●

●

●

●

●

●●

●

●
●
●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●
●

●

●

●

●●

●
●
●

●

●

●
●

●
●
●
●
●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
●
●●

●
●●
●●
●

●

●

●

●●

●

●
●

●

●

●

●●●
●
●●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●

●
●
●

●
●
●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●●

●
●●●●●●●

●●●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●●

●

●

●

●●●●

●
●
●

●

●

●
●
●●
●

●

●
●●●●

●

●

●●

●●

●
●●●

●

●●

●

●
●

●
●●

●

●

●
●●●

●●

●

●●

●

●

●
●

●
●

●

●●

●

●●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●
●
●

●
●

●

●

●

●

●
●●

●
●
●●●

●

●

●●●

●
●
●
●

●

●●
●
●

●

●

●

●●

●

●●

●

●
●

●

●

●●
●●
●
●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●
●
●●
●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●
●●●

●
●
●
●

●●

●

●

●

●●●

●

●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●

●
●
●

●
●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●●
●

●

●

●
●●
●●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●●

●

●●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●
●●

●

●●

●

●

●

●

●●●
●
●

●
●

●
●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●

●

●●
●
●●●

●

●
●
●
●
●
●
●

●

●

●●

●
●

●
●●●●

●

●
●●

●

●●●

●●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●

●●

●

●
●

●

●

●

●

●●

●●
●

●●

●

●
●●

●

●●●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●●
●●
●

●

●

●

●●
●
●

●
●
●

●

●
●●●

●
●

●
●●
●

●

●
●

●
●
●

●

●
●

●

●

●

●
●
●

●●

●

●

●●●

●

●

●
●

●●

●●●
●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●
●

●
●

●●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●●

●

●

●
●
●●

●
●

●
●

●
●
●

●
●

●

●

●
●

●●

●

●●●

●●●

●●●
●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●●●
●

●

●●
●
●
●
●●

●
●

●●

●

●

●

●
●●

●

●
●
●
●

●
●

●

●

●●

●
●
●
●

●

●●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●
●

●
●

●

●●

●

●

●
●
●●
●

●

●●
●
●

●

●●●

●
●

●

●

●
●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●●
●
●●●

●

●

●
●
●●

●

●
●●

●
●

●

●

●
●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●●

●
●

●

●
●
●●

●

●
●

●

●●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●
●●●

●

●
●
●

●

●

●

●
●
●

●

●
●
●●●●●●

●

●

●

●●

●
●●

●

●
●●
●
●
●●

●

●

●●

●

●

●
●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●●
●

●
●
●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●
●
●

●
●

●

●●
●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●

●
●

●

●●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●

●●●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●●
●

●

●

●

●

●
●●
●

●●

●

●

●
●

●
●
●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●●●

●●
●
●
●●●

●
●

●

●

●●
●

●●

●●

●

●
●

●

●
●●●

●

●
●●
●

●

●
●
●
●

●

●

●

●

●

●

●

●●
●

●

●●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

1
2

3
4

5

0 100 200 300 400 500
position

y

Fig 3. The simulated data with no trend. Five samples are shown. The mean signals
without noise are shown by bold red lines.

Table 1
The number of shared change-points detected for the simulation with no trend.

Number of change-points

Method ≤ 5 6 7 8 > 8

fast CBS 0 481 395 108 16
CBS-SS 0 524 376 90 10
m-SaRa 0 0 0 0 1000

Multiple-sample CBS 0 1000 0 0 0
Multiple-sample m-SaRa 0 1000 0 0 0

and trend as follows

Yi,t = µi,t + 0.12 sin(2πt/96 + ψ) + 0.24 sin(2πt/240 + φi) + εi,t,

where ψ ∼ U(0, 2π), φi ∼ U(0, 2π), and εi,t ∼ N(0, 1). In this model, the
term 0.12 sin(2πt/96+ψ) is the trend shared by all samples, and 0.24 sin(2πt/240+
φi) is the trend unique for each sample. Five representative sequences are
given in Figure 4. Similar to Table 1, Table 3 presents the number of shared
change-points detected. We can see that the trends exercised great impact
on the single sample methods. Multiple-sample CBS also yielded a notable
number of false change-points. In fact, we considered various scenarios with
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Table 2
True and false positives grouped by the change-points (CP1-CP6) for the simulation with

no trend.

(a) Average number of true positives.

CP1 CP2 CP3 CP4 CP5 CP6
Number of Carriers 20 20 50 50 100 100

fast CBS 19.9 19.9 47.6 47.6 94.5 94.5
CBS-SS 19.9 19.9 47.5 47.6 94.5 94.5
m-SaRa 19.8 19.8 47.3 47.2 92.0 91.8

Multiple-sample CBS 20.0 20.0 50.0 50.0 100.0 100.0
Multiple-sample m-SaRa 20.0 20.0 50.0 50.0 100.0 100.0

(b) Average number of false positives.

CP1 CP2 CP3 CP4 CP5 CP6

fast CBS 0.3 0.3 0.3 0.3 0.2 0.2
CBS-SS 0.2 0.2 0.2 0.2 0.2 0.2
m-SaRa 2.9 4.1 4.7 5.1 5.0 5.1

Multiple-sample CBS 2.7 2.3 2.8 2.7 1.3 1.2
Multiple-sample m-SaRa 0.7 0.1 0.3 0.3 0.0 0.0

different period and magnitude of the trends. Not surprisingly, the perfor-
mance of multiple-sample CBS, and of course the single sample methods, be-
came worse. Fortunately, our multiple-sample m-SaRa procedure performed
robustly, detecting all 6 true change-points in 997 out of 1000 replicates. An
intuitive explanation is that the CBS scan statistic uses global information
and thus cannot distinguish between a large scale trend and a real changed
region, whereas SaRa scan statistic look for sharp mean change using lo-
cal information, which makes it immune from the influence of a large scale
trend.

Table 3
The number of shared change-points detected for the simulation with trend.

Number of change-points

Method ≤ 5 6 7 8 > 8

fast CBS 0 0 0 0 1000
CBS-SS 0 0 0 0 1000
m-SaRa 0 0 0 0 1000

Multiple-sample CBS 3 749 231 8 9
Multiple-sample m-SaRa 0 996 4 0 0

4.2.3. Data with dependent errors. Even though our method and most
other methods assume independent errors, we would like to simulate situa-
tions with correlated errors and find out how robust the methods are when

Proceedings of the 60th ISI World Statistics Congress, 26-31 July 2015, Rio de Janeiro, Brazil p.17
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Fig 4. The simulated data with trend. Five samples are shown. The mean signals without
noise are shown by bold red lines.

the independent error assumption is violated.
To evaluate the effect of dependent errors, we simulated data using the

same mean model as specified in Section 4.2.1. Instead of assuming εi ∼
MVN(0, I), we simulated εi from a moving average model of order 20, with
all the 20 parameters equal 0.01. Similarly, Table 4 shows the number of
shared change-points detected. Compared with Table 1, we notice that the
correlated errors increased the false positive in single sample methods but did
not affect the performance of the multiple sample methods. An explanation
similar to Section 4.2.2 applies here, because the effects of correlated errors
on each sample is similar to random short trends.

Table 4
The number of shared change-points detected for the simulation with dependent errors.

Number of change-points

Method ≤ 5 6 7 8 > 8

fast CBS 0 31 93 229 647
CBS-SS 0 137 312 314 237
m-SaRa 0 0 0 0 1000

Multiple-sample CBS 0 1000 0 0 0
Multiple-sample m-SaRa 0 1000 0 0 0
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5. Real data analysis. To demonstrate the usage of our proposed
method, we applied our method to the Children’s Hospital of Philadelphia
(CHOP) CNV data (Shaikh et al., 2009). The raw Log R Ratio (LRR) data
for 2, 026 healthy children from CHOP was downloaded from dbGaP. To
obtain biologically meaningful results, we mapped the probes to the most
current genome build GRCh37.p10. Multiple-sample m-SaRa were ran using
bandwidth of 5, 10, and 15, and α = 10−4 was used to determine the cutoff
λ.

At the end, we identified 36, 518 unique change-points, among which
79.3% are shared by multiple individuals. Figure 5 shows the distribution
of the carrier proportions of the identified change-points. About 94.1% of
the change-points are carried by less than 5% of the individuals. To further
confirm the length of identified CNV regions, we calculated the number of
SNP markers between each pair of two consecutive change-points identified
in each individual. The distribution of the number of markers are shown in
Figure 6. Note that if we assume that the CNV regions are separated by
normal regions, about half of the regions between consecutive change-points
are CNV regions that should span only small numbers of SNP markers be-
cause the individuals are all healthy subjects. As expected, 50.2% of the
regions between our identified change-points span across no more than 30
SNP markers.

6. Discussion. Although CNV has been studied for more than a decade,
multiple sample based calling methods had not been proposed until recent
years. In practice, single sample methods are still dominating. This is partly
due to the lack of systematical research comparing multiple sample methods
and single sample methods. In this study, we have shown that in terms of
shared change-point detection, single sample methods are equivalent to tak-
ing the most significant statistic across samples, which is under-powered and
sometimes does not work. Therefore, to achieve biologically meaningful de-
tection power, specificity has to be sacrificed in single sample method, which
inevitably increases the number of false positives. This approach is a waste
of information across samples, especially with the growth of studies with
large sample sizes. To the contrary, multiple sample methods combine evi-
dences from multiple samples to detect shared change-points, which boosts
the statistical power and hence reduces the false positives. Theoretically, we
have proven that the power of multiple sample methods always converges
to 1 at an exponential rate in the number of samples, which is faster than
single sample methods. This can also be seen in our simulation.

Instead of using the CBS-like scan statistic, we used the SaRa scan statis-
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Fig 5. The histogram of the carrier proportion of individual change-points identified in
CHOP data.

tic in our method. The SaRa statistic utilizes the local information, which
can significantly speed up the computation. Because SaRa scan statistic uses
a moving window, the computation complexity is linear in the number of
markers T . Sorting is also needed in combining multiple samples using adap-
tive Fisher’s method, thus the overall complexity of our proposed method is
O(TN logN). In practice T >> N , our method is much more computation-
ally efficient than other competing methods whose computation complexities
are as least O(NT 2) or O(NT log T ).

We should note that despite the simplicity and speed of SaRa, the se-
lection of the bandwidth h is nontrivial: too small an h may reduce the
statistical power, whereas too large an h may miss the short CNVs. A sim-
ilar problem also haunts other single sample methods. Specifically, short
CNV regions are hard to detect since the statistical evidence is relatively
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Fig 6. The histogram of the number of SNP markers between change-points identified in
CHOP data. Regions with ≤ 5000 markers are shown on the left, and regions with ≤ 100
markers are shown on the right.

weak. Thus, the false positive rate usually has to be sacrificed to detect these
short regions. Some ad hoc methods have been proposed to solve this prob-
lem. For example, in Birdsuite, a program called Canary can detect common
short CNVs by using prior knowledge. This solution is, however, platform-
specific and cannot work when the prior knowledge is lacking. This problem
is greatly alleviated in multiple-sample SaRa. Because we have shown in
theory that the statistical power of multiple-sample SaRa converges to 1 as
the number of samples increases, a large h is no longer crucial to get de-
cent statistical power given enough samples. In multiple sample SaRa, we
recommend h be selected as large as possible provided that the biological
interests are accommodated. For example, the median distance between ad-
jacent markers is below 700 bases in Affymetrix Genome-Wide Human SNP
Array 6.0. Using this platform, h should be set ≤ 15 to study CNVs longer
than 10k bases.

Furthermore, we proposed a novel adaptive Fisher’s method which com-
bines p-values while adapting to the proportions of true signals. We have
shown by simulation that this statistic is powerful regardless of the pro-
portion of true signals among the combined p-values. Another advantage is
that the sums of the transformed order p-values are standardized using their
theoretical means and variances, which saves computation time by avoiding
a double permutation procedure.
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In conclusion, we proposed a new change-point calling method which uti-
lizes information from multiple samples. The SaRa scan statistic is used to
make this method computationally efficient and robust against long range
trends in the data. The novel adaptive Fisher’s statistic enables the method
to accommodate both rare and common change-points. It should also be
noted that this work is the first that compared the single sample methods
and multiple sample methods theoretically and numerically.

APPENDIX A: PROOF OF THEOREM 1

Let h = L/2, then with arguments similar to Lemma 3 in Niu and Zhang
(2012), for any combining statistic W (t, h), it suffices to show that there
exists λ such that as N →∞,

P
(
W (t, h) < λ

)
→ 1, for any h-flat point t,(A.1)

P
(
W (τj , h) < λ

)
→ 0, for any j ∈ {1, . . . , J}.(A.2)

We first prove (A.1) and (A.2) for W Sum , WWSum , WFisher , and W Stouffer

by proving them for a general class of combining statistics of the following
form

W (t, h) =
1

N

N∑
i=1

f
[
D̃i(t, h)

]
,(A.3)

where f(·) is a function satisfying conditions (C1) and (C2) specified below.
Let Z0 ∼ N(0, 1) and Zj follows the same distribution as D̃i(τj , h) (for

j = 1, . . . , J).

(C1) E|f(Z0)|3 and E|f(Zj)|3 (j = 1, . . . , J) exist.
(C2) ν0 ≡ Ef(Z0) < νj ≡ Ef(Zj) for any j.

It can be shown that W Sum , WWSum , WFisher , and W Stouffer all follow
(A.3) and satisfy (C1). They also satisfy (C2) when η2j > 1 or when η2j = 1
and ∆j 6= 0.

Next, we show that (A.1) and (A.2) hold for (A.3) with the two con-
ditions specified above. We let ζ = minj(νj − ν0)/2, λ = ν0 + ζ, and
ζj = ζ/

√
Var[f(Zj)] for j = 0, . . . , J . For (A.1), note that for an h-flat

point t,

P
(
W (t, h) < λ

)
= P

(
W (t, h)− ν0√
Var[f(Z0)]/N

<
√
Nζ0

)
,

which can be approximated by the corresponding normal probability with
the difference being controlled by the non-uniform Berry-Esseen bound (see
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e.g. Theorem 14 on Page 125 of Petrov (1975)) as follows.

P
(
W (t, h) < λ

)
≥ Φ

(√
Nζ0

)
− C · E|f(Z0)− ν0|3√

N
{

Var[f(Z0)]
}3/2(

1 +
√
Nζ0

)3
≥ 1− 1√

2Nπζ0
exp

(
− 1

2
Nζ20

)
− C · E|f(Z0)− ν0|3

N2ζ3

→ 1, as N →∞,

where C is an absolute constant.
Similarly, since νj > λ,

P
(
W (τj , h) < λ

)
≤ Φ

(
−
√
Nζj

)
+

C · E|f(Zj)− νj |3
√
N
{

Var[f(Zj)]
}3/2(

1 +
√
Nζj

)3
≤ 1√

2Nπζj
exp

(
− 1

2
Nζ2j

)
+
C · E|f(Zj)− νj |3

N2ζ3

→ 0, as N →∞.

Therefore, we prove the sure coverage property forW Sum ,WWSum ,WFisher ,
and W Stouffer .

For WHC , the sure coverage property follows directly from Theorem 7
in Cai, Jeng and Jin (2011) which showed that, in our setting, letting λ =√

2(1 + ρ) log logN for a positive number ρ guarantees (A.1) and (A.2).
For adaptive Fisher’s method, we consider fFisher (·) = − log{2[1 − Φ(| ·

|)]}. We verified (C1) and (C2) for fFisher before and continue to use the
notation νj (j = 0. . . . , J) and ζ. Recall that for a flat-point t, WAF (t, h) =
max1≤i≤N |Ṽi(t, h)| where for each 1 ≤ i ≤ N , Ṽi(t, h) is a standardized sum
of independent exponential random variables. In this case, let λ =

√
Nζ and

we have

P
(
WAF (t, h) <

√
Nζ
)

= P
( N⋂
i=1

{
−
√
Nζ < Ṽi(t, h) <

√
Nζ
})

≥ 1−
N∑
i=1

[
1− P

(
−
√
Nζ < Ṽi(t, h) <

√
Nζ
)]
,

where according to Result 23 on Page 132 of Petrov (1975), for an absolute
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constant C,

P
(
−
√
Nζ < Ṽi(t, h) <

√
Nζ
)

≥ 1−
√

2

Nπζ2
exp

(
− 1

2
Nζ2

)
− 2C(

1 +
√
Nζ
)3 · ∑N

k=1w
3(k, i)[∑N

k=1w
2(k, i)

]3/2
≥ 1−

√
2

Nπζ2
exp

(
− 1

2
Nζ2

)
− 2C(

1 +
√
Nζ
)3 .

Therefore,

P
(
WAF (t, h) <

√
Nζ
)

≥ 1−

√
2N

πζ2
exp

(
− 1

2
Nζ2

)
− 2NC(

1 +
√
Nζ
)3

→ 1, as N →∞.

On the other hand, for each j ∈ {1, . . . , J},

P
(
WAF (τj , h) >

√
Nζ
)

≥ P
(
|ṼN (τj , h)| >

√
Nζ
)

= 1− P
(
−
√
Nζ < ṼN (τj , h) <

√
Nζ
)

= 1− P
(
− ζ < 1

N

N∑
i=1

fFisher
[
D̃i(τj , h)

]
− ν0 < ζ

)
→ 1, as N →∞.

This concludes our proof of the sure coverage property for the adaptive
Fisher’s method.

APPENDIX B: PROOF OF THEOREM 2

For Part (a), we can show that W Sum , WWSum , WFisher , and W Stouffer

all follow (A.3) and satisfy Condition (C3) specified below.
Let Z0 ∼ N(0, 1) and Zj follows the same distribution as D̃i(τj , h) (for

j = 1, . . . , J).

(C3) The moment generating function of the random variable f(Zj), namely
Mj(β) ≡ E{exp[βf(Zj)]} exists on a neighborhood B0 of 0 for j =
0, 1, . . . , J .

Note that (C1) and (C2) still holds for these combining methods. We
can define λ respectively for each combining method as in Theorem 1 that
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satisfies (A.1). This threshold is more conservative than what is required by
the current theorem, so it suffices to show that with this threshold, (A.2)
holds with a rate of convergence exponential in N .

Under Condition (C3), Cramer-Chernoff Theorem gives

lim
N→∞

1

N
logP

(
W (τj , h) < λ

)
= −Ij(λ),(B.1)

where Ij(x) = supβ∈B0
[βx− logMj(β)]. Since λ 6= νj , Ij(λ) > 0. Therefore,

the claim is true for W Sum , WWSum , WFisher , and W Stouffer .
To prove the claim for the higher criticism method, note that for each j,

we can find 0 < xj < 1 such that P (pi(τj , h) < xj) 6= xj . With arguments
similar to those in Cai, Jeng and Jin (2011),

P
(
WHC (τj , h) ≤

√
2(1 + ρ) log logN

)
= P

(
sup

0<x<1

√
N
∣∣∣ 1
N

∑N
i=1 1{pi(τj ,h)<x} − x√

x(1− x)

∣∣∣ ≤√2(1 + ρ) log logN

)

≤ P

(∣∣∣ 1

N

N∑
i=1

1{pi(τj ,h)<xj} − xj
∣∣∣ ≤√2xj(1− xj)(1 + ρ) log logN

N

)
.

Since E(1{pi(τj ,h)<xj}) = P (pi(τj , h) < xj) 6= xj , we can apply the Cramer-
Chernoff Theorem again and obtain an upper bound converging to zero
exponentially fast as in (B.1).

For the adaptive Fisher’s method, with the same notation as Theorem 1,

P
(
WAF (τj , h) <

√
Nζ
)
≤ P

(
ν0 − ζ <

1

N

N∑
i=1

fFisher
[
D̃i(τj , h)

]
< ν0 + ζ

)
.

Then since E{fFisher [D̃i(τj , h)]} > ν0 + ζ, we can again show it converges
to zero at a rate at least exponential in N .

For Part (b), we use notation AN ∼ BN to denote that limN→∞AN/BN =
1 for two sequences {AN} and {BN}. We first find the order of λ∗. For an
h-flat point t, we have

P
(

max
i
|D̃i(t, h)| > λ∗

)
= 1− {1− 2[1− Φ(λ∗)]}N = α.

This suggests that limN→∞ λ
∗ = ∞ and thus by Mill’s ratio 1 − Φ(λ∗) ∼

1
λ∗φ(λ∗). With simple calculation, the formula above leads to 1

λ∗φ(λ∗) ∼
− log(1 − α)/2N . Solve for λ∗, we can show that λ∗ ∼

√
2 logN , or more

precisely,

lim
N→∞

(λ∗)2 − 2 logN + log logN + log
[
π log2(1− α)

]
= 0.
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Second, we find the asymptotic power of detecting change-point τj , which
is

P
(

max
i
|D̃i(τj , h)| > λ∗

)
= 1−

{
1− 2(1− pj)

[
1− Φ(λ∗)

]
− pj

[
1− Φ

(λ∗ − ψj
ηj

)
− Φ

(−λ∗ − ψj
ηj

)]}N
≡ 1− (1− P1 − P2)

N ,

where ψj = −∆j

√
h/2. Note that

P2 ∼
C

λ∗
exp

[−(λ∗)2 + 2|ψj |λ∗

2η2j

]
,

where C denotes a generic constant. Since η2j ≥ 1, P2/P1 →∞, as N →∞,

log
[
1− P

(
max
i
|D̃i(τj , h)| > λ∗

)]
∼ −N C

λ∗
exp

[−(λ∗)2 + 2|ψj |λ∗

2η2j

]
∼ −C ·N

1− 1

η2
j (logN)

− 1
2
+ 1

2η2
j exp

( |ψj |
η2j

√
2 logN

)
,

which tend to −∞ as N → ∞ but slower than −N . Thus, the theorem is
proved.
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