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Abstract

In 2013 Jodanova, Dusek and Stehlik consider Mixed Poisson Process with Pareto mixing variable and intro-
duce Mixed Poisson-Pareto, Exponential-Pareto and Erlang-Pareto distributions. The aim of this paper is
to popularize these results. Some new results are given: invariance of Exponential-Pareto type with respect
to integrated tail transformations, the distribution of the tinning variable of the Mixed Poisson-Pareto dis-
tribution and description of the tinned Mixed Poisson-Pareto process.

Keywords: Generalized exponential integral function; Gamma-Pareto distribution; Integrated tail distribu-
tion; Tinning variable.

1. Introduction
Mixed Poisson processes (MPPs) are considered e.g. in Willmot (1993), J. Grandell (1997) and Karlis et al.
(2005). The most popular MPP is the one with Gamma mixing variable. Its inter-arrival times are Pareto
distributed and the number of ”events” up to time t is Negative binomial. See Greenwood and Yule (1913).
Jordanova et al.(2013) investigate Mixed Poisson process with Pareto mixing variable (MPPP). They define
the Exponential-Pareto distribution (EPD) as the distribution of the inter-arrival times of MPPP and gener-
alise it to Gamma - Pareto distribution. The last distribution describes the moment of the ”n-th event”. The
Poisson-Pareto distribution counts the the number of ”events” up to time t. Here these results are revisited
and some new properties are given.
The paper is organised as follows. In the second section we remind the definition for EPD and prove that this
type is invariant with respect to integrated tail transformations (this transformation increases only the first
parameter). In Second 3 the p-thinning distribution of Mixed Poisson-Pareto distribution is found. Section
4 contains description of MPPP. We show that its thinning is again MPPP.
Along the paper Λα,δ is a Pareto distributed random variable (r.v.) with parameters α > 0 and δ > 0 (briefly
Λα,δ ∼ Pareto(α, δ)). Its cumulative distribution function (c.d.f.) is

FΛα,δ(x) =

{
0 , x ≤ δ

1− δα

xα , x > δ
.

2. The Exponential-Pareto distribution
Definition 1. A r.v. τα,δ has Exponential-Pareto distribution with parameters α > 0, δ > 0 if its c.d.f. is

Fτα,δ(x) =

{
0 , x ≤ 0

1− αEα+1(δx) , x > 0
, (1)

where

Ep(z) = zp−1Γ(1− p, z), p ∈ R, z > 0, Γ(x, t) =

∫ ∞
t

yx−1e−ydy, p ∈ R, t > 0

are correspondingly the generalized exponential integral and the upper incomplete Gamma function. Briefly
τα,δ ∼ EP (α, δ). It is a proper distribution therefore the renewal process born by it is not terminating.
More information about these functions could be found e.g. in Olver et al. (2010) or Milgram (1985).
Plots of these c.d.fs could be seen by Wolfram alpha. E.g. for α = 1 and δ = 1 you could just type
plot[1− ExpIntegralE[2, x], {x, 0, 2}] in its command line.
The probability density function (p.d.f.) is

Pτα,δ(x) = αδEα(δx), x > 0, (2)



its Laplace transform is

Ee−tτα,δ = αδαt−α
∫ ∞
δ/t

z−α(1 + z)−1dz = αδ

∫ ∞
0

e−tyEα(δy)dy,

and its moments and variance are finite

Eτkα,δ =
αk!

δk(k + α)
, k = 1, 2, ..., V arτα,δ =

α(2 + 2α+ α2)

δ2(α+ 1)2(α+ 2)
. (3)

This distribution arises as exponential distribution with Pareto mixing variable and possesses the following

scale property τα,δ
d
= δτα,1, where

d
= means equality in distribution. It coincides with the one of the fraction

of independent standard exponential E1 and Pareto distributed random variables Λα,δ. More precisely

τα,δ
d
=

E1

δΛα,1
. (4)

In the next proposition we find the failure rate of this distribution and prove that its integrated tail trans-
formation only increases the first parameter of the distribution, but keeps the same type.
Theorem 1. Let τα,δ ∼ EP (α, δ) and FI(x) = 1

Eτα,δ

∫ x
0

(1 − Fτα,δ(y))dy the integrated tail distribution.

Then
sτα,δ

d
= τα, δs

, s > 0. (5)

The failure rate is
Pτα,δ(x)

1− Fτα,δ(x)
=

e−δx

xEα+1(δx)
− α

x
(6)

and the integrated tail distribution is EP (α+ 1, δ).
Proof. (5) is an immediate consequence of (4). (6) follows after replacing (1) and (2) in the definition for
the failure rate. In order to prove (6) consider x > 0.

FI(x) =
δ(α+ 1)

α

∫ x

0

αEα+1(δy)dy = δ(α+ 1)

∫ x

0

Eα+1(δy)dy = (α+ 1)

∫ x

0

Eα+1(δy)d(δy) =

= (α+ 1)[Eα+2(0)− Eα+2(δx)] = (α+ 1)[
1

α+ 1
− Eα+2(δx)] = 1− (α+ 1)Eα+2(δx) = P (τα+1,δ < x).

Definition 2. A random vector (τα,δ,1, τα,δ,2, ..., τα,δ,n) with

P (τα,δ,1 ≥ x1, τα,δ,2 ≥ x2, ..., τα,δ,n ≥ xn) = α.Eα+1(δ(x1 + ...+ xn)), xi ≥ 0, i = 1, 2, ..., n,

is called Exponentially-Pareto distributed random vector. Briefly (τα,δ,1, τα,δ,2, ..., τα,δ,n) ∼ EP(α, δ).
Any subset of its coordinates is again EP(α, δ) distributed and its copula is Archimedian survival copula
with generating function φ(t) such that

φ←(t) = αδ

∫ ∞
0

e−t.yEα(yδ)dy.

Here φ←(t) means the inverse function of φ(t).
There exist a probability space, independent identically distributed (i.i.d.) standard exponential r.vs E1, E2, ..., En
and independent on them r.v. Λα,δ ∼ Pareto(α, δ) on the same probability space such that

(τα,δ,1, τα,δ,2, ..., τα,δ,n)
d
=
(
E1Λ−1

α,δ, E2Λ−1
α,δ, ..., EnΛ−1

α,δ

)
.

If Λα,δ ∼ Pareto(α, δ) and (τ1, τ2, ..., τn) are defined by

P (τ1 ≥ x1, τ2 ≥ x2, ..., τn ≥ xn) =

∫ ∞
δ

e−y.(x1+...+xn)PΛα,δ(y)dy, xi ≥ 0, i = 1, 2, ..., n,



then (τα,δ,1, τα,δ,2, ..., τα,δ,n)
d
= (τ1, τ2, ..., τn).

Definition 3. A r.v. Tα,δ,n with survival function

P (Tα,δ,n ≥ x) = α(δx)α
n−1∑
i=0

Γ(i− α, δx)

i!
, x ≥ 0 (7)

is called Erlang-Pareto distributed with parameters α > 0, δ > 0 and n ∈ N. Briefly Tα,δ,n ∼ ErlP (α, δ, n).

PTα,δ,n(x) = αδ
(δx)α−1

(n− 1)!
Γ(n− α, δx) =

αδnxn−1

(n− 1)!
Eα−n+1(δx), x ≥ 0.

ET kα,δ,n =
α(n+ k − 1)!

(n− 1)!δk(α+ k)
, k = 1, 2, ..., V arTα,δ,n =

αn(n+ (α+ 1)2)

δ2(α+ 2)(α+ 1)2
.

Ee−tTα,δ,n =
αδα

tα

∫ ∞
δ/t

zn−α−1

(1 + z)n
dz.

Let T1,n be an Erlang distributed r.v. with parameters 1 and n independent on Λα,δ ∼ Pareto(α, δ), then

Tα,δ,n
d
=
T1,n

Λα,δ

d
=

T1,n

δΛα,1

d
=
Tα,1,n
δ

.

In analogous way we could proceed with the following definition.
Definition 4: We say that the random variable νa,α,δ is Gamma-Pareto distributed with parameters a > 0,
α > 0 and δ > 0, briefly νa,α,δ ∼ G− P (a, α, δ), if it has the following p.d.f.

Pνa,α,δ(x) =
α.δαxα−1

Γ(a)
Γ(a− α, xδ) =

α.δaxa−1

Γ(a)
Eα−a+1(xδ), x > 0.

Obviously ErlP (α, δ, n) distribution coincides with G− P (n, α, δ) and if νa,α,δ ∼ G− P (a, α, δ), then

νa,α,δ
d
=

γa,1
Λα,δ

d
=

γa,1
δ.Λα,1

d
=
νa,α,1
δ

,

where γa,1 is Gamma distributed random variable with parameters a and 1, independent on Λα,δ.

Eνka,α,δ =
(a+ k − 1)...aα

(α+ k)δk
, k = 1, 2, ...., V ar νa,α,δ =

αa[(α+ 1)2 + a]

δ2(α+ 2)(α+ 1)2
.

Ee−s.νa,α,δ =
α.δα.

sα

∫ ∞
δ/s

za−α−1

(1 + z)a
dz.

Proposition 1. If νa,α,δ ∼ G− P (a, α, δ), then sνa,α,δ
d
= νa,α, δs

, s > 0.

3. Mixed Poisson-Pareto distribution
Definition 5. A random variable with probability mass function (p.m.f.)

P (Nα,δ = k) =
α.δα

k!
Γ(k − α, δ) =

α.δk

k!
Eα−k+1(δ) k = 0, 1, 2, ... (8)

is called Mixed Poisson-Pareto random variable with parameters α > 0, δ > 0. Briefly Nα,δ ∼MPP (α, δ).
It is a proper distribution and describes the number of ”events” up to time t in a Mixed Poisson-Pareto
process. See Jordanova et al. (2013).

ENα,δ =
α.δ

α− 1
, α > 1, V ar Nα,δ =

α.δ

α− 1
+

α.δ2

α− 2
−
(

α.δ

α− 1

)2

, α > 2,



EzNα,δ = α.Eα+1(δ.(1− z)) = P (Nα,δ(1−z) = 0), z ∈ (0, 1). (9)

The factorial moments

ENα,δ(Nα,δ − 1)...(Nα,δ − k + 1) = EΛkα,δ =
α.δk

α− k
, k = 1, 2, ..., [α].

For α > 2 these distributions are over dispersed. The index of dispersion is

V ar Nα,δ
E Nα,δ

= 1 +
δ

(α− 1)(α− 2)
.

If Nα,δ ∼MPP (α, δ), then there exists a probability space and two random variables Λα,δ and NΛα,δ defined
on it such that Λα,δ ∼ Pareto(α, δ),

P (NΛα,δ = k|Λα,δ = y) =
yk

k!
e−y, y > δ, k = 0, 1, ...

and Nα,δ
d
= NΛα,δ . Moreover (Λα,δ|NΛα,δ = n)

d
= (ξ|ξ ≥ δ), n = [α]+1, [α]+2, ... where ξ ∼ Gamma(n−α, 1).

The following recursive formula allows us to calculate consecutively the probabilities in p.m.f.

P (Nα,δ = k) =
α

k
P (Po(δ) = k − 1)− α− k + 1

k
P (Nα,δ = k − 1).

Now we will proceed with obtaining another properties of this distribution. Mecke (1968) proved that a
discrete r.v. N is a mixed Poisson distributed if and only if it can be obtained by independent p-tinning for
every p ∈ (0, 1). The last means that there exists a probability space, a discrete r.v. ηp and i.i.d. Bernoulli
r.vs IA1

, IA2
, ... defined on it, independent on ηp and such that p = P (A1) satisfying

N
d
= IA1

+ ...+ IAηp
d

=:Bi(ηp, p).

Theorem 2. 1. Let Nα,δ ∼ MPP (α, δ), then for all p ∈ (0, 1), Nα,δ could be obtained as independent

p-tinning of Nα, δp
, i.e. Nα,δ

d
= Bi(Nα, δp

, p).

2. Suppose NΛα,δ ∼ MPP (α, δ) with mixing variable Λα,δ and IB is independent on it Bernoulli r.v., then

for all p ∈ (0, 1), NIBΛα,δ
d
= IBNΛα,δ

d
= Bi(IBNα, δp

, p)
d
= Bi(NIBΛ

α, δ
p

, p).

3. If N1, N2, ...|Λα,δ = y are conditionally i.i.d. Po(y) distributed, then N1(Λα,δ) + ...+Ns(Λα,δ)
d
= Nα,δs.

Proof: 1. Let p ∈ (0, 1). Consider i.i.d. Bernoulli r.vs IA1
, IA2

, ... such that p = P (A1) and independent on
them Nα, δp

∼MPP (α, δp ). We use gξ(z) for the probability generating function (p.g.f.) of the r.v. ξ. By the

properties of the p.g.f. of the compounds, (9) and the form of p.g.f. of the Bernoulli r.vs we obtain

gIA1
+IA2

+...+IAN
α, δ
p

= gN
α, δ
p

(gIA1
(z)) = αEα+1(

δ

p
(1− gIA1

(z))) =

= αEα+1(
δ

p
(1− (1− p+ pz))) = αEα+1(δ(1− z)) = gNα,δ(z).

Definition 6: We say that a random vector (Nα,δ1 , ..., Nα,δn) is Ordered Poisson-Pareto distributed with
parameters with parameters α > 0, 0 < δ1 < .... < δn (briefly (Nα,δ1 , ..., Nα,δn) ∼ OPP (α, δ1, ..., δn)) if

P (Nα,δ1 = k1, ..., Nα,δn = kn) =
α.δk11 .δk2−k12 ...δ

kn−kn−1
n (δ1 + ...+ δn)α−kn

k1!(k2 − k1)!...(kn − kn−1)!
.Γ(kn − α, δ1 + ...+ δn) =

=
α.δk11 .δk2−k12 ...δ

kn−kn−1
n

k1!(k2 − k1)!...(kn − kn−1)!
.E1−kn+α(δ1 + ...+ δn), k = 0, 1, ..., k1 ≤ k2 ≤ ... ≤ kn



and zero otherwise.
Definition 7: We say that a random vector (Nα,δ1 , ..., Nα,δn) is Mixed Poisson-Pareto distributed with

parameters α > 0, δ1 > 0, ..., δn > 0 (briefly (Nα,δ1 , ..., Nα,δn) ∼ ~MPP (α, δ1, ..., δn)) if

P (Nα,δ1 = k1, ..., Nα,δn = kn) =
αδk11 δk22 ...δknn (δ1 + ...+ δn)α−k1−...−kn

k1!k2!...kn!
Γ(k1 + ...+ kn − α, δ1 + ...+ δn) =

=
α.δk11 .δk22 ...δknn
k1!k2!...kn!

.E1−k1−...−kn+α(δ1 + ...+ δn), k1, k2, ..., kn ∈ {0, 1, ...}

and zero otherwise.
Proposition 2. If (Nα,δ1 , ..., Nα,δn) ∼ OPP (α, δ1, ..., δn), then

(Nα,δ1 , Nα,δ2 −Nα,δ1 ..., Nα,δn −Nα,δn−1) ∼ ~MPP (α, δ1, δ2, ..., δn).

Proposition 3. If (Nα,δ1 , ..., Nα,δn) ∼ ~MPP (α, δ1, ..., δn) then
(Nα,δ1 , Nα,δ1 +Nα,δ2 ..., Nα,δ1 + ...+Nα,δn) ∼ OPP (α, δ1, δ2, ..., δn).

4. Mixed Poisson-Pareto process
Let α > 0, δ > 0 and A be a sigma algebra with right-continuous filtration. Consider a probability space
Ω = (Ω,A,P) and a sequence τ1, τ2, ... of positive r.vs defined on it such that for all n ∈ N , (τ1, τ2, ..., τn) ∼
EP(α, δ). Then for all i = 1, 2, ... τi ∼ EP (α, δ). We refer to the r.v. τi as the ”i-th holding (waiting,
inter-arrival) time”. By (4) we could explain the dependence of τi by the parameters α and δ. The bigger the
values of δ the shorter the periods between the consecutive ”events”. Decreasing of α entails heavier right
tail of the c.d.f. of the mixing variable and more mass distributed by τi around zero, i.e. the consecutive
events occur more frequently. Define

Tα,δ,n = τα,δ,1 + τα,δ,2 + ...+ τα,δ,n.
Jordanova et al. (2013) proved that Tα,δ,n ∼ ErlP (α, δ, n). This r.v. could be interpreted as ”the time of
n-th event”. Denote the corresponding counting process by Nα,δ, i.e.

{Nα,δ(t); t ≥ 0} = {sup{i ≥ 0 : Tα,δ,i ≤ t}, t ≥ 0}.

Nα,δ(t) is the number of the ”events” up to time t. Then {Nα,δ(t), t ≥ 0} is a Mixed Poisson Process with
Pareto mixing variable. Let us remind the definition. See Jordanova et al. (2013).
Definition 8. Let N be a standard homogeneous Poisson process in Ω, (EN(1) = 1) and c(t) be a non-
negative, strictly increasing continuous function, not obligatory starting from the coordinate beginning and
c(t)→∞, t→∞. Assume Λα,δ and N are independent. We call the random process

{Nα,δ(t); t ≥ 0} = {N(Λα,δc(t)); t ≥ 0}

a Mixed Poisson Process with Pareto mixing variable. Briefly {Nα,δ(t); t ≥ 0} ∼MPPP (α, δ; c(t)).
As a particular case of MPPs, the MPPPs are Markov processes with dependent additive increments and
finite number of jumps on any finite time interval. They are over-dispersed and posses the order statistics
property. If c(t) = t they are homogeneous in time. (See e.g. Mikosch, T. (2004)). Jordanova et al. (2013)
prove that the distribution of the time intersections, finite dimensional distributions and the distribution of
the additive increments of the MPPPs are as follows. If {Nδ,α(t); t ≥ 0} ∼ MPPP (α, δ; c(t)), α > 0, δ > 0,
then for all t > 0, Nα,δ(t) ∼MPP (α, δc(t)). For n ∈ N, 0 ≤ t1 < t2 < ... < tn,

(Nα,δ(t1), Nα,δ(t2), ..., Nα,δ(tn)) ∼ OPP (α, δc(t1), δ(c(t1)− c(t1)), ..., δ(c(tn)− c(tn−1))).

(Nα,δ(t1), Nα,δ(t2)−Nα,δ(t1), ..., Nα,δ(tn)−Nα,δ(tn−1)) ∼ ~MPP (α, δc(t1), δ(c(t2)−c(t1)), ..., δ(c(tn)−c(tn−1))).

If c(t) = t, then Nα,δ(t)
f.d.d.

= Nα,1(δt)
d
= Nα,δt(1). The last equality is true for all t > 0.

Denote by ηb,α,δ(t) = t− Tα,δ,Nα,δ(t) - the length of the period (TNα,δ(t), t] since the last ”event” occur, and
by ηf,α,δ(t) = Tα,δ,Nα,δ(t)+1 − t - the length of the period (t, TNα,δ(t)+1] until the next ”event” occur. Then
for all t > 0 ηf,α,δ(t) ∼ EP (α, δ) and P (ηb,α,δ(t) ≥ x1) = αEα+1(δx1), x1 ∈ [0, t]. Due to the fact that the
support of ηb,α,δ(t) is bounded (it is [0, t]), the distribution of ηb,α,δ(t) could be called ”truncated EPD with
parameters α > 0 and δ > 0”. The common distribution of these r.vs is given by



P (ηb,α,δ(t) ≥ x1, ηf,α,δ(t) ≥ x2) = αEα+ 1(δ(x1 + x2)), x1 ∈ [0, t], x2 > 0.

Theorem 3. Consider i.i.d. r.vs Y1, Y2, ... arriving according to {Nα,δ(t); t ≥ 0} ∼ MPPP (α, δ; t). For any
Borel set B,

{Nα,δ,p(t); t ≥ 0} = {
Nα,δ(t)∑
i=1

I{Yi ∈ B}; t ≥ 0} ∼MPPP (α,
δ

p
; t), P (Y1 ∈ B) = p.

5. Conclusions
If we consider MPPP, Erlang-Pareto distribution characterizes the moments of the n-th ”event”. Exponential-
Pareto distribution is the one of the inter-arrival times and Mixed Poisson-Pareto distribution describes the
number of ”events” up to time t. It turns out that:

• the Exponential - Pareto type is invariant with respect to integrated tail transformations. The distri-
bution of the integrated tail increases the first parameter α to α+ 1;

• the mixed Poisson-Pareto type is invariant with respect to p-tinning. For all p ∈ (0, 1) p-tinning
procedure of MPPP is equivalent to change of the parameter δ to δp. From the theory of general MPP
(See e.g. Grandell (1997)) it is well known that this is equivalent to t→ tp change of time.

In the terms of applications, e.g. in insurance, Theorem 3 means that if we have i.i.d. claims arriving ac-
cording to MPPP (α, δ; t), P (A) = p and consider only the claims satisfying A then the counting process of
these claims is MPPP (α, δp ; t).
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